

Boston Public Library

PURCHASED FROM THE James Lyman Whitney MEMORIAL FUND ESTABLISHED BY

James Lyman Whitney
BIBLIOGRAPHER
AND SOMETIME LIBRARIAN

L E T T E R S

$\mathbb{E} \mathbb{U} \mathbb{E} \mathbb{R}$

ON DIFFERENT SUBJECTS

PHYSICS AND PHILOSOPHY.

ADDKESSED TO
 A GERMAN PRINCESS.

TRANSLATED FROM THE FRENCH BY
HENRY HUNTER, D.D.
with
ORIGINAL NOTES,
And a Glofary of Foreign and Scientific Terms.

Arrond ceition.

$$
\begin{gathered}
\text { IN TWO VOLUMES. } \\
\text { VOL. I. }
\end{gathered}
$$

Finnon:

```
FRINTED FOR MURPAY AND HIGHLEY; J. CUTHELL; VERNOR
AND HOOD; LONGMAN AND REES; WYNN AND SCHOLEI;
G. CAWTHORN; J. HARDING; AND J. MAWNAN.
```

$$
\begin{gathered}
1803 \times \\
1.1
\end{gathered}
$$

CONTENTS

of the

FIRSTVOLUME。

		$\begin{array}{r} \text { Page } \\ \text { xiii } \end{array}$
	TRANSLATOR's. Preface -	
	French Editor's Advertifement	xxvii
	Elogium of Euler - - x	xxili
Letter I.	Of Magnitude, or Extenfion	I
II.	Of Velocity -	5
III.	Of Sound, and it's Velocity	9
IV.	Of Confonance and Diffonance	13
V.	Of Unifon and Octaves	16
VI.	Of other Confonances	0
VII.	Of the Twelve Tones of the Harpfichord	24
VIII.	Of the Pleafure derived from fine Mufic	30
IX.	Compreffion of the Air	33
X.	Rarefaction and Elafticity of the Air	37
XI.	Gravity of the Air	45
XII.	Of the Atmofphere, and the Barometer	45
XIII.	Of Wind-Guns, and the Compreffion of Air in Gun-powder	48
XIV.	The Effect produced by the Heat and Cold on all Bodies, and of the Pyrometer and Thermometer	52
XV.	Changes produced in the Atmofphere by Heat and Cold	55
XVI.	The Cold felt on High Mountains and at great Depths, accouuted for a 3 XVII. Of	60

XVII. Of Light, and the Syftems of Defcartes and Newton 65
XVIII. Difficulties attending the Syftem of Emanation 70XIX. A different Syftem refpecting the Nature ofRays and of Light, propofed74
XX. Of the Propagation of Light 79
XXI. Digreffion on the Difances of the Heavenly Bodies, and on the Nature of the Sun, and his Rays 83
XXII. Elucidations on the Natare of Iuminous Bo- dies, and their Difference from opaque Bo- dies illumined 87
XXIII. How opaque Bodies become vifible. New- ton's fyftem of the Reflection of Rays, pro- pofed 97
XXIV.- Examination and Refutation of Newton's Syf- tem 94
XXV. - A different Explanation of the Manner in which opaque Bodies illuminated become vifible 99
XXVI. Continuation of the fame Subject. 102
XXVII. Conclufion: Clearnefs and Colour of opaque Bodies illumined 106
XXVIII. Nature of Colours in particular 110
XXIX. Tranfparency of Bodies relative to the Tranf- miffion of Rays 114
XXX. Of the Tranfmiffion of Rays of Light, through tranfparent Mediums, and their Refraction 119
XXXI. Rarefaction of Rays of different Colours 123
XXXII. Of the azure-colour of the Heavens 128
XXXIII. Of Rays iffuing from a diftant luminous Point, and of the vifual Angle I33XXXIV. Of the Supplement which Judgment lendsto Vifioh137XXXV. Ex-
XXXV. Explanation of certain Phenomena relative to Optics
XXXVI. Of Shade 146
XXXVII. Of Catoptrics, and the Reflection of Rays from plain Mirrors 150
XXXVIII. Reflection of Rays, from convex and con-
cave Mirrors. Burning Mirrors 153
XXXIX. Of Dioptrics 157
XL. Continuation of burning Glaffes, and their Focus 161
XLI. Of Vifion, and the Structure of the Eye 165
XLII. Continuation. Wonders difcoverable in the the Structure of the Eye 167
XLIII. Farther continuation. Aftonifhing Diffe- rence between the Eye of an Animal, and the artificial Eye, or camera obfcura 170
XLIV. Perfections difcoverable in the Structure of the Eye ${ }^{175}$
XLV. Of Gravity, confidered as a general Pro- perty of Body 177
XLVI. Continuation. Of fecific Gravity 18 I
XLVII. Terms relative to Gravity, and their true Import 185
XLVIII. Reply to certain Objections to the Earth'sfpherical Figure derived from Gravity188
XLIX. True Direction and Action of Gravity rela- tively to the Earth 191L. Different Action of Gravity with refpect tocertain Countries and Diftances from theCentre of the Earth194
LT. Gravity of the Moon 199
LII. Difcovery of univerfal Gravitation by Newton 202
LIII. Continuation. Of the mutual Attractionof the Heavenly Bodies206

| Letter | Different Sentiments of Philofophers refpec- |
| :--- | :--- | :--- | :--- |
| LIV. | |
| ing univerfal Gravitation. The Attrac- | |
| tionifts | |

I.XXXII. Different Syftems relative to this Subject 3^{14}
LXXXIII. Examination of the Syftem of pre-eftabliflaed Harmony. An objection to it 3^{17}
EXXXIV. Another Objection - - 32π
LXXXV. Of the Liberty of Spirits; and a Reply to Objections againft Liberty - 325
LXXXVI. The fame Subject continued - 328 .
LXXXVII. Influence of the Liberty of Spirits upon
Events
LXXXVIII. Of Events natural, fupernatural, and moral 33^{6}
LXXXIX. Of the Queftion refpecting the beft World
poffible; and of the origin of Evil
XC. Connection of the preceding Confiderations
with Religion. Reply to the Objec-
tions of the Philofophic Syftems againft
Prayer
XCI. The Liberty of intelligent Beings in Harmonywith the Doctrines of the Chriftian Religion - - 348
XCII. Elucidation refpecting the Nature of Spirits $35^{\text {²}}$

XCILI. The Subject continued. Reflections on the State of Souls after Death
XCIV. Conra-
LetterPage
XCIV. Confiderations on the Action of the Soul upon the Body, and of the Body upon the Soul 360
XCV. Of the Faculties of the Soul, and of Judgment 364
XCVI. Conviction of the Exiftence of what we per- ceive by the Senfes. Of the Idealifts, Ego- tifts and Materialifts 369
XCVII. Refutation of the Idealifts 373
XCVIII. The Faculty of Perceiving, Reminifcence, Memory and Attention. Simple and com- pound Ideas 377
XCIX. Divifion of Ideas into clear and obfcure, dif- tinct and confured. Of Diftraction 385
C. Of the Abftraction of Notions. Notions ge- neral and Individual: of Genus and Species 385
CI. Of Language ; it's Nature, Advantages, andNeceffity, in order to the Communicationof Thought, and the Cultivation of Know-ledge389
CII. Of the Perfections of a Language. Judg- ment and Nature of Propofitions, affirma- tive and negative; univerfal or particular 393
CIII. Of Syllogifms, and their different Forms, when the firf Propofition is univerfal 397
CIV. Different Forms of Syllogifms, whofe firft Pro- pofition is particular 403
CV. Analyfis of fome Syllogifms 407
CVI. Different Figures and Modes of Syllogifins 4 II
CVII. Obfervations and Reflections on the differentModes of Syllogifm417
CVIII. Hypothetical Propoftions, and Syllogifms con- fructed of them 421
CIX. Of the Impreffion of Senfations on the Soul 425CX Of the Origin and Permiffion of Evil ; and ofSin429
Letter Page
CXI. Of moral and phyfical Evil 433
CXII. Reply to Complaints of the Exiflence of phy- fical Evil 437
CXIII. The Real Deftination of Man : Ulefulnefs and Neceflity of Adverfity 440CXIV. Of true Happinefs. Converfion of Sinners.Reply to Objections on the Subject - 444
CXV. The true Foundation of Human Knowledge. Sources of Truth, and Claffes of Information derived from it - 448

DIRECTIONS FOR PLACING THE PLATES.

VOL. II.

III.	-	-	-	-	122
IV.	-	-	-	-	128
1.	-	-	-	-	184
II.	-	-	-	-	246
III.	-	-	-	-	272
IV.	-	-	-	-	290
V.	-	-	-	-	306
VI.	(outlines)	-	-	-	330
VII.	-	-	-	-	\$56
VIII.	-	-	-	-	371
1 N	-	-	-	-	420
X.	-	-	-	-	460
X 1.	-	-	-	-	480

In confequence of the three Volumes of Euler in French being comprized in two, in the Tranflation, a few inaccuracies have occurred in the numberIng of the l'ates, which however will be remedied by the Plates being placed oppofite the Pages, as above.

PREFACE.

TT was long a matter of furprize to me, that a Work fo well known, and fo juftly efteemed, over the whole European Continent, as Euler's Letters to a German Princefs, fhould never have made it's way into our Ifland, in the language of the Country. While Peterfburg, Berlin, Paris, nay the capital of every petty German principality, was profiting by the ingenious labours of this amiable man, and acute philofopher, the name of Euler was a found unknown to the ear of youth in the Britifh metropolis. I was mortified to reflect that the fpecious and feductive productions of a Roulfeau, and the poifonous effufions of a Voltaire, fhould be in the hands of fo many young men, not to
fay young women, to the perverfion of the underftanding, and the corruption of the moral principle, while the fimple and ufeful inftructions of the virtuous Euler were hardly mentioned.

I frequently fuggefted the idea of a tranflation to more than one literary friend, in whofe ability for the tafk I could place greater confidence than in my own : but not finding it undertaken, I determined, at length, to attempt it myfelf, with the ability which I had; and, in doing this, I confidered myfelf as rendering a meritorious fervice to my country.

As foon as Providence had beftowed on me the bleffing of children, I felt it to be my duty to charge myfelf with their inftruction. How I have fucceeded it becomes not me to fay: but every day I live, the importance of early and
proper culture is more deeply impreffed on my mind. There feems to be ftill a defideratum towards completing the plan of an ufeful education-fomething that fhall fuggeft to the opening mind, fuitable fubjects of thought, and affift it in purfuing a fimple train of reflectionfomething that fhall convey knowledge in the guife of amufement; that fhall not be impofed as a tafk, but conferred as a favour.

The fubjects of thefe Letters, and the Author's method of treating them, feem to me much adapted to this purpofe. With the affiftance of a very moderate apparatus, they might conduct youth of both fexes, with equal delight and emolument, to a very competent knowledge of natural philofophy: very little previous elementary knowledge is neceffary to a profitable perufal of them, and that little may be very eafily acquired.

A confiderable part of our common fchool education, it is well known, confifts of the ftudy of the elegant and amufing poetical fictions of Antiquity. Without meaning to decry this, may I not be permitted to hint, that it might be of importance frequently to recall young minds from an ideal world, and it's ideal inhabitants, to the real world, of which they are a part, and of which it is a fhame to be ignorant. Let your pupil, by all means, read the poets; let him read Ovid, and, after he has amufed himfelf with the golden age of old Saturn, lead him out into the open firmament of heaven, and thew him the venerable planet of that name, coeval with time, yet fhining with unimpaired luftre, after fo many revolutions of ages. Having adminiftered the antidote that may repel the poifon, which a difplay of the lewd intrigues of a fabulous Jupiter or Venus naturally inftill; let him view, through
the telefcope, the two beautiful fars fo called, emitting their chafte and modeft light to the unpolluted eye of fober reafon. When he has diverted himfelf with the transformation of a lady into a bear, and that bear into a conftellation, point out to him the heavenly northern light, which never changes it's place, and, with undeviating fidelity, conducts the mariner through the feas of a hemifphere. Let him accompany Phacton to the palace of the fun, and fmile at beholding the adventurous boy mount the flaming chariot; and then check his mirth by pointing to the glorious orb of day, travelling in the greatnefs of his ftrength; not dragged round the earth by fiery-footed fteeds, but wheeling worlds on worlds, each in his feveral orbit, around him, wvith irrefiftible force.

Why fhould not the boy be taught the principle on which his kite flies? Vol. I.

What more pleafant amufement can he have than to communicate to the needle the magnetic virtue, and to fteer his courfe through the hazel grove, by a compafs of his own conftructing? Why not teach him to elicit the electric fpark; and to aftonifh and delight his fifters with the wonders of the magic lantern?

Euler wrote thefe Letters for the inftruction of a young and fenfible female, and in the fame view that they were written, they are tranflated, namely, the improvement of the female mind; an object of what importance to the world! I rejoice to think I have lived to fee female education conducted on a more liberal and enlarged plan. I am old enough to remember the time when well-born young women, even of the north, could fpell their own language but very indifferently, and fome hardly
read it with common decency; when the young lady's hand-writing prefented a medley of outlandifh characters; and when a column of pounds, fhillings and pence prefented a labyrinth as inextricable as the extraction of the cube root. While the boys of the family were converfing with Virgil, perhaps with old Homer himfelf, the poor girls were condemned to crofs-ftitch, on a piece of gauze-canvafs, and to record their own age at the bottom of a fampler.

They are now treated as rational beings, and fociety is already the better for it. And wherefore fhould the terms female and philofophy feem a ridiculous combination? Wherefore preclude to a woman any fource of knowledge to which her capacity, and condition in life, entitle her to apply? It is cruel and ungenerous to expofe the frivolity of the fex, after reducing it to the neceffity of being filly and frivolous. Cul-
tivate a young woman's underftanding, and her perfon will become, even to herfelf, only a fecondary concern; let her time be filled up in the acquifition of attainable and ufeful knowledge, and then the will ceafe to be a burden to herfelf and to every body about her; make her acquainted with the world of nature, and the world of art will delude her no longer.

The time, I truft, is at hand, when the Letters of Euler, or fome fuch book, will be daily on the breakfafting table, in the parlour of every female academy in the kingdom; and when a young woman, while learning the ufeful arts of paftry and plain-work, may likewife be acquainting herfelf with the phafes of the moon, and the flux and reflux of the tides. And I am perfuaded fhe may thrum on the guitar, or touch the keys of the harpfichord, much more agreeably both to herfelf and others, by
ftudying a little the theory of found. I have put the means of this in her power; it will be at once her fault and her folly if fhe neglect it.

In tranflating the Work, I have followed the laft Paris Edition, given by Meffrs. de Condorcet ${ }^{\circ}$ o de la Croix, in 1787, for the purpoie of introducing the ufeful notes of thefe gentlemen; but I have taken the liberty to reftore, from the original edition, that of Mietau and Leipfic, in 1770 , feveral paffages which the French Editor had thought proper to fupprefs. To fome notes of my own I have added feveral others, furnifhed by two ingenious friends, whofe names I am not at liberty to publifh. The courfe of thirty-four years of a fcientific age, muft have fupplied abundance of new facts and experiments, by which the philofophy of even a Euler may be corrected and improved. The tranflated
notes of the Pavis Edition, I have, for the fake of diftinction, marked with the characters F. E. and the original notes of this Edition, with the initials E. E. And I think it my duty, in this place, to vindicate to our ingenious countryman, Mr. Dollond, the optician, the difcovery of achromatic glaffes for telefcopes, mentioned in the letters on dioptrics; for that gentleman is, in truth, the Author of this valuable improvement.

I have had the illuftrative plates engraved in a better fyle and manner than French artifts generally employ on mathematical figures : and to do credit to myfelf, not to fay Euler, he appears in his Englifh drefs with every advantage which the fationer and printer could beftow. At the fame time, in order to keep down the price as much as poffible, inftead of dividing the Work into

Three

Three Volumes, as in all the foreign. editions, I have reduced mine to Troo; as the divifion is altogether indifferent to the fubjects.

It being generally acceptable to the Reader to know fomething about the man with whom he is converfing as an author ; to gratify this curiofity, I have likewife given a trannation of the Elogium of Euler, read before the Academy of Sciences, and prefixed to M. de Condorcet's edition, becaufe it contains fome interefting traits of the character and events of the life of this diftinguifhed perfonage. But what is the life of a literary or fcientific man, and where are we to find the hiftory of it? In his works. Newton and Euler are their own beft biographers; and the library of every fcholar in Europe exhibits a never-dying reprefentation of what they were, and what they atchieved. We
have hardly a trace of Wren's perfonal and domeftic habits; but every ftone of St. Stephen's Walbrook, and of St. Paul's, is infcribed with his name, and tranfmits a memoir of the Architect.

The frequent, tirefome, courtly addrefs of Your Highness, except at the firf fetting out, I have entirely omitted; out of no difrefpect to Princes, but becaufe it feemed to me a mere unneceffary wafte of words', which only encumber and disfigure a work of fcience. The Princefs and her inftructor are both gone to that awful world, in which the diffinctions of the prefent, thofe of virtue excepted, are for ever obliterated.

As every book fhould be as complete in itfelf as poffible, and this being deftined to the ufe of the unlearned, I have fubjoined a gloffary of the foreign and fcientific words which occur in the courfe
of thefe Letters. Some will, perhaps, think I may have fwelled this beyond the neceffary fize, and given an explanation of many terms already fufficiently underfood. If this be an error, it is on the fafe fide. I would rather infert twenty words of this defcription, than omit one with which an ordinary reader might be unacquainted, and his progrefs thereby retarded. And I well know, that there is often a vague and obfcure idea of words floating in the brain, which a fhort defcription or an example would inftantly render precife and diftinct : and many young perfons would, without hefitation, confult a gloffary, who might be afraid, or afhamed, or, perhaps, too proud, to ask a queftion.

H. H.

Hoxton, 1802.

-

ADVERTISEMENT.

BY THE FRENCH EDITOR.

THE Letters of Euler to a German Princefs have acquired, over all Europe, a celebrity, to which the reputation of the Author, the choice and importance of the feveral fubjects, and the clearnefs of elucidation, juftly entitle them. They have defervedly been confidered as a treafury of fcience, adapted to the purpofes of every common feminary of learning. They may be ftudied to advantage without much previous elementary knowledge ; they convey accurate ideas refpecting a variety of objects, highly interefting in themfelves, or calculated to excite a laudable curiofity; they infpire a proper tafte for the fciences, and for that found philofophy which, fupported by fcience, and never lofing fight of her cautious, fteady, methodical advances, runs no rifk of perplexing, or mifleading the attentive ftudent.

The only cenfure that can be paffed on thefe Letters is, now and then, a digreffire detail, fomewhat
fomewhat too tedious, on queftions rather foreign to the fciences, and confiderable inaccuracy in point of ftyle. Without failing in the refpect due to Euler, I thought myfelf at liberty to omit fome paffages altogether, and to correct the ftyle of others. Few Readers, furely, will be fo faftidious as to refufe the admiration attached to the name of this illuftrious man, for the fake of fome flight blemifhes, in a work of fuch confiderable length. A genius, lilse his, which has fignalized itfclf by fo many important difcoveries, can fuffer no diminution of greatnefs, from his not having written a foreign language with claffical purity. A man whofe tranfcendant powers have aftonifhed and confounded even thofe whom habits of profound reflection muft have rendered hard to pleafe, refpceting prodigies of this fort, is not lefs worthy of veneration, that he did not apply the whole force of his mind to every object which prefented itfelf. It is of the laft indifference to his glory, whether thefe fmall fpecks are effaced, or fuffered to remain.

But the cafe is widely different as to the perfons for whofe ufe the perufal of this work is particularly defigned. It is of importance for young people, whether of France, or of any other country, to defer reading till they thoroughly underfand the language of books, in which the
rules of that language may be frequently violated. And the youth of the French nation muft be cautioned againft turning into ridicule a few uncouth expreifions which, in the hurry of compofition, may have dropped from the pen of a man of genius. Refpect for every thing which merits this appellation is one of the fentiments which education ought moft powerfully to inculcate, as it is one of the moft infallible prefervatives againft prejudice of every kind, againft the illufions of vanity and felf-love, nay, againft the paffions which deprive us of the force neceffary to our approximation toward thefe objects of univerfal admiration.

As to other retrenchments, they affect, almoft all of them, reflections which relate lefs to the fciences and philofophy, than to theology, and frequently even to the peculiar doctrines of that ecclefiaftical communion in which Euler lived. It is unneceffary to affign a reafon for omiffions of this defcription.

I have prefixed to this edition the Elogium of Euler, read before the Academy of Sciences, omitting only fome fcientific details, which might have appeared tedious to certain Readers.

As the Letters of Euler contain nothing, on feveral queftions, capable of intercting the generality of mankind, I have made fome additions,
but without throwing them into the form of letters. Thofe publimed at the fame time with this edition, have for their only object the calculation of probabilities. I took for granted that perfons difpofed to give them a perufal, muft have already made a confiderable progrefs in mathematical knowledge. This branch of knowledge occupies at prefent, and ever muft, a diftinguifhed place in a courfe of liberal education. If it is not abfolutely impoffible to do without it, in order to the attainment of accurate ideas in phyfics, and refpecting the laws of the univerfe, and the calculations of probability, we fhall, at leaft, by the ftudy of mathematics, fave much time and trouble, and aequire a habit of thinking and reafoning on other fubjects with greater exactnefs.

The idea which fome have formed of the difficulty of this fcience, obftructs the progrefs of knowledge, and is not founded in truth. There are few minds, unlefs a previous education has already impreffed falfe ideas, and a factitious delicacy, but what are capable of receiving the ideas neceffary to mathematical combination, of acquiring the habit of purfuing them, and a relifh for the fimple truths which they prefent. As to the extraordinary powers which are deemed requifite, I venture to affirm, that there are few
perfons, even of moderate capacity, who may not, by employing a little more time, and purfuing a courfe fomewhat more deliberate, by entering more attentively into detail, and from frequently repeated applications, attain a degree of mathematical knowledge, far beyond what is really ufeful, nay, I add, neceffary, to all men of liberal education.
1.as

4 \rightarrow
$4-1 \quad$ in
$\begin{array}{ccc}\therefore 1 & \therefore \quad 1 \\ & 2\end{array}$

.

.

$1=-1+$

1

,

以. 5.7011

ELOGIUM OF EULER.

LEONARD EULER, Prefident of the Mathema' tical School, in the Academy of Peterfburg, and previoufly in that of Berlin; Fellow of the Royal Society in London; and of the Academies of Turin, Lifbon and Bale; Foreign Affociate of that of the Sciences, was born at Bâle, April the 15 th, 1707, being the fon of Paul Euler and Margaret Brucker.

His father who, in 1708, undertook the paftoral charge of the village of Riechen, in the vicinity of Bâle, was his firft inftructor; and he enjoyed betimes the pleafure of contemplating the progrefs of his fon's expanding faculties, and dawning glory, a cordial fo reviving to the heart of a parent, advance under his own eye, and gather ftrength from his own affiduities.

He had fudied inathematics under Fames Bernouilli. It is well known, that this celebrated fcholar united to a great genius for the fciences, a profound philofophy, which is not always the companion of this genius, but which ferves to give it a wider range, and to render it's exertions more ufeful. In teaching, he endeavoured to imprefs on his pupils, that geometry is not a detached fcience, but exhibited it to them as, at once, the bafis and the ker-ftone of

Vos.. I.
c
a!
all human knowledge; as the fcience in which the progrefs of the mind may be the moft diftinctly obferved ; the fcience, the cultivation of which exercifes our faculties to the greateft advantage, as giving to the underftanding, at one and the fame time, ftrength and accuracy; finally, as a ftudy equally valuable, from the number and the variety of it's applications, and from it's tendency to inure the fudent to a method of reafoning, which may, afterwards, be fuccefsfully employed, in the inveftigation of every feecies of truth, and as a guide in the conduct of life.

Paul Euler, who had fully imbibed the principles of his mafter, inftructed his fon in the elements of mathematics, though he had deftined him, ultimately, to the fudy of theology ; and fuch was young EuLER's early proficiency, that on being fent to the univerfity of Bâle, he was deemed not unworthy of the attention and particular inftructions of Fobn Bernouilli. Such was his application, and fuch his happy difpofitions, as quickly to fecure to him the friendfhip of Daniel and Nicolas Bernouilli, the pupils, and, by this time, the rivals of their father. Nay, he had the felicity of getting into the good graces of the fevere 70 bn Bernouilli himfelf, who carried his condefcenfion fo far as to give him a private leffon, once a week, in the view of removing any difficulties which might occur in the courfe of reading and ftudy. Euler employed the other days of the week in fuch a manner as would enable him to make the moft of this diftinguifhed mark of favour.

This

This excellent method of profecuting his ftuidies, preferved opening genius from exhaufting it's ftrength, in combating iniuperable, difficultics, and from wandering in unknown mazes, which it mi ht attempt to unravel : it directed and feconded his own exertions; but, at the fame time, hid him under the neceflity of calling forth all his powers, which, accordingly, received confant increafe from an exercife proportioned to his age, and to the progrefs in knowledge which he had already made.

But of this fingular advantage he was foon deprived; for fcarcely had he attained the degree of Mafter of Arts, when his father, who intended him for his own fucceffor, enjoined him to exchange the fudy of mathematics for that of theology. Happily, the effect of this act of authority was of fhort duration. It proved no dificult matter to perfuade the father, that his fon was deftined to fupply, to the learned world, the place of Yobn Bernouilli, and not to fink into the obfcure parfon of Riechen.

An effáy, compofed by Euler in his nineteenth year, on the mafting of fhips, a fulject propofed by the Academy of Sciences, procured him, in 1727 , an addition to his academical honours, fo much the more refpectable, that the youthful native of the Alps could have derived no affiftance from practical knowledge, and that he yielded the palm to Mr. Borguer alone, an able geometrician, then at the zenith of his reputation, and, for ten years before, profeflor of hydrography in a maritime city.

About the fame period, Euler firod candidate
for a vacant chair in the univerfity of Balle: but it is fate, or chance, that fettles the difpute between competitors for offices of this fort, and, on this occafion, it was unfavourable, I do not fay to Euler, but to his country, which, a few days afterward, loft him for ever.

Two years before this, Daniel and Nicolas Bernouilli had been invited to Ruffia. Euler felt the fincereft regret at parting with the friends of his youth, and engaged them to promife their utmoft exertions to procure him a fimilar invitation, which he was eager to participate. This needs to excite no furprize. The fplendor of the capital of a vaft empire, the glare diffufing itfelf over the purfuits of which it is the theatre, and over the very perfons of it's inhabitants, feems to confer a glory on them, capable of eafily feducing a youthful imagination, and of dazzling the free, but poor and obfcure, citizen of a petty republic.

The brothers, Bernouilli, were confcientioufly faithful to their promife, and exerted themfelves as ftrenuoufly, to bring forward a competitor fo formidable, as ordinary men would have done to keep a rival out of fight.

Euler's journey to Ruffia commenced under aufpices the moft melancholy and difcouraging. It was not long before he received intelligence, that Nicalas Bernouilli had fallen a victim to the feverity of the climate ; and the very day he fet foot on Ruffian ground, Catharine I. paid the debt of nature. This event; at firft, feemed to threaten the approach-
ing diffolution of the Academy, whofe eftablifhment that Princefs had juft completed, in compliance with the will of the deceafed Czar, her hufband.

Euler, at a prodigious diftance from his native country, deftitute of the advantage which Danicl Bernotilli poffeffed, that of an illuftrious and refpected name, to prepare his way, formed the refolution of entering into the Ruflian marine fervice. One of the admirals of Peter I. had already promifed to procure. him a fituation; when, happily for geometry, the ftorm, which lowered over the fciences, fpent itfelf. Daniel Bernouilli retired to his own country: Euler was declared Profeffor of Geometry, and fucceffor to his illuftrious friend, in 1733. The fame year he married a young lady of the name of Gfell, a compatriot of his own, the daughter of a painter, whom Peter I. had brought with him to Ruffia, on returning from his firft voyage.

From this time forward, to ufe Bacon's expreffion, Euler felt that he had given hoftages to fortune: and that the country, in which he could hope to form an eftablifhment for his family, was neceffarily tranfformed into his native country. Born and educated in the bofom of a nation, all whofe governments preferve, at leaft, the appcarance and the language of a republican conftitution; in which, notwithftanding diftinctions more real, than thofe which feparate between the higheft flave of a defpot and the loweft of his fubjects, the forms of equality have always been fcrupuloufly obferved; in which the refpect due to the laws extends to ufages the moft indifferent, pro-
vided they have the fanction of antiquity, and of vulgar opinion : Euler found himfelf in a country, where the Prince exercifes unlimited authority; where the moft facred law of abfolute governments, that which regulates the fucceffion to the throne, was at that time uncertain, or treated with contempt; where grandees, enflaved to the fovereign, rule with a defpotic fway over an enflaved people; where, at the very moment, a vaft empire, under the government of an ambitious, jealous and cruel foreign defpot, was enduring all the tyranny of the unrelenting Biren, and prefenting a fpectacle as terrifying as inftructive to men of letters, who had been enticed to feek in it's bofom, glory, fortune, and the power of enjoying, in perfect fecurity, the calm delights of literary refearch.

It is eafier to conceive, than to defrribe, what muft have been the feelings of Euler, bound to remain in fuch a fituation, by chains which it was impoffible for him to burft afunder. To this circumftance, however, we are, perbaps, indebted for that unremitted application to literary purfuits, of which he then acquired the habit, and which became his only refource, in a capital, filled with the parafites, or the enemies, of a violent Minifter; the former intent on feeding and flattering his fufpicious temper; the latter employed in fecuring themfelves from it's fanguinary effects. This had made fo deep an impreffion on the mind of Euler, that we find the traces of it fo late as 17.41, the year after Biren's fall, when tyranny had given place to a government more mild
and humane. At that period he went from Peterfburg to Berlin, on the earneft folicitation of the King of Pruflia. He was prefented to the Queenmother. This Princefs took great plcafure in the converfation of enlightened men : fhe received them with that noble familiarity which announces, in Princes, the fentiment of a perfonal greatnefs, independent of rank and title, and which has become one of the characteriftic marks of that auguft family. The Queen of Pruffia, however, could extract from Euler monofyllables only : fhe taxed him with a timidity and referve, which the cordiality of his reception could not poffibly have infpired: Why, then, will you not talk to me, faid the Queen ? Becaule Modam, replied he, I bave juft come from a country, zelbere people are banged, if they talk.

Feeling myfelf now called upon to give fome account of Euler's immenfe fcientific labours, I fhrink from the impoffibility of following him in detail, of conveying any thing like an accurate idea of that multiplicity of difcoveries, of new methods of inveftigation, of ingenious views, diffufed over more than thirty feparate publications, and over near feven hundred memoirs, of which about two hundred, depofited in the Academy of Peterfburg: previous to his death, are deftined to enrich, in their order, the future coilections publifhed by that learned body.

But a parțicular character feems, to me, to diftinguifh Euler from the other illuftrious men who, in purfuing the fame career, have attained a glory which his has not eclipfed; that character is, his haming
embraced the mathematical fciences in their univer:fality; his having brought to perfection, one after: another, the different parts; and, enriching the whole by important difcoveries, his having produced a very beneficial revolution in the manner of treating them. I imagined, therefore, that in fketching a methodical reprefentation of the different branches of thefe fciences, in pointing out the progrefs of each, and the happy improvements to be afcribed to the genius of Euler, I fhould give, at leaft as far as my ability permits, a jufter idea of this vonderful man, who, by uniting fo many extraordinary talents, has prefented a phenomenon, if the expreffion may be allowed, of which the hiftory of fcience has hitherto furnifhed no example.

Algebra had long been a fcience of very limited uie and application. The mode of confidering the idea of magnitude, only in the higheft degree of abftraction of which the human mind is fufceptible; it's rigoroufly feparating from that idea every thing which, by employing imagination, might give fupport, or repofe, to the underfanding; finally, the extreme generality of the figns which this fcience makes ufe of, render it in ome meafure too foreign to our nature, too remote from ordinary conception, to admit of the mind's taking extraordinary pleafure in it, and of cafily acquiring a habit of tracing it's operations. The algebraic miethod is apt to difcourage even perfons the moft difpofed to abftract fpeculation. If the object of purfuit be ever fo little complicated, we are forced to lofe fight of it entirely,
and to confine our whole attention to dry algebraic characters; the road is fafe and fure, but the point which is aimed at, and that from whence we took our departure, equally vanifh from the eye of the geometrician ; and it required no $!$ light degree of courage, to venture out of fight of land, without any other pilot than a recently difcovered fcience. Accordingly, on examining the works of the great geometricians of the laft age, even of thofe to whom algebra is indebted for the moft important difcoveries, we fhall fee how little they were accuftomed to handle this very weapon, which has been brought to fuch a ftate of perfection ; and it is impoffible to refufe to Euler the praife of having effected a revolution, which renders algebraic analyfis a mode of calculation luminous, univerfal, of general application and of eafy acquifition.

Thus, at certain epochs, when after ftrenuous exertions the mathematical fciences feemed to have exhaufted all the refources of genius, and to have reached the ne plus ultra of their career; all at once a new method of calculation is introduced, and the face of the fcience is totally changed. We find it immediately, and with inconceivable rapidity, enriching the fphere of knowledge, by a folution of an incredible number of important problems, which geometricians had not dared to attempt, intimidated by the difficulty, not to fay the phyfical impoffibility, of purfuing calculation to a real iffue. Juftice would, perhaps, demand, in favour of the man who invented
and introduced thefe methods, and who firft taught their ufe and application, a fhare in the glory of all thofe who have practifed them with fuccefs; he has, at leaf, claims upon their gratitude, which cannot be contefted without a crime.

Euler had neglected no part of analyfis: he has demonftrated fome of the theorems of Fermat, on indeterminate analyfis, and has difcovered many others, no lefs curious, and of no lefs difficult inveffigation. The knight's movement, in the game of chefs, and different other problems of fituation, have likewife excited his curiofity, and exercifed his genius. He blended with refcarches the moft important, amufements of this fort, frequently more difficult, but of little ufe either to the progrels of the fcience itfelf, or to the applications hitherto attempted. Euler was too difcreet, not to be fenfible of the impropriety of devoting much of his attention to refearches of mere curiofity; but at the fame time of a mind too enlarged not to difcern, that their inutility could only be momentaneous, and that the only means of expofing their inutility, was to attempt to unfold and generalize them.

The particular queftions which do not frictly belong to the regular body of mathematical fcience, which do not enter into the applications of which i_{t} is fufceptible, ought not to be confidered merely as, the means of exercifing the powers, and difplaying. the genius of the geometrician : in cultivating the fciences, we almof always fet out with attaching
ourfelves to fome detached parts, in preference; in proportion as fucceffive difcoveries multiply, the relations which unite the parts gradually appear ; and to the illumination refulting from this union, we are moft frequently indebted for the great difcoveries, which form an era in the hiftory of the human mind.

I thall conclude this brief reprefentation of Euler's labours, on pure analyfis, with obferving, that it would be injuft to limit it's influence on the progrefs of mathematics, to the innumerable difcoveries with which his works abound. The communications which he has opened between all the parts of a fcience fo extenfive; thofe general views which fometimes he does not fo much as indicate, but which cannot efcape an attentive obferver; the paths, whofe entrance he has fatisfied himfeif with clearing by removing the firft obftacles which oppofed; thefe are fo many more benefits conferred on the fphere of fcience, and of which pofterity will undoubtedly avail itfelf, while perhaps the hand which beftowed them may be forgotten.

The treatife on mechanics, which Euliz gave to the world in 1736 , is the firft great work in which analyfis has been applied to the fcience of motion. The number of things, entirely new, or exhibited in a new liglit, which this book contains, would have aftonifhed geometricians, had not Euler already publifhed, feparately, the greateft part of it.

In his endleís labours on the fame fcience, he was ever faithful to analyfis, and the happy ufe he made
of it, has at laft procured for the analytical method a preference to every other.

The problem of vibrating chords, and all thofe which belong to the theory of found, or the laws of the ofcillation of the air, have been fubjected to analyfis, by the new methods with which he enriched the calculation of partial differences. A theory of the motions of fluids, founded on the fame calculation, ątonifhed every one by the clearnefs which he has diffufed over queftions fo intricate, and the facility which he has communicated to modes of operation, founded on an analyfis fo profound.

All the problems of phyfical-aftronomy, treated in the prefent age, have been refolved, by the analytical method peculiar to Euler. His calculation of the perturbations of the earth's orbit, and efpecially his theory of the moon, may be held up as models of the fimplicity, of the precifion, to which this method may be carried; and in reading this laft work, we fee, with no lefs aftonifhment, how far a man of great genius, animated with a defire of omitting nothing effential on an important queftion, has been able to carry the patience and perfeverance of application.

Aftronomy employed only the geometric method: Euler was fenfible of every thing which that fcience had to expect from the aid of analyfis, and he demonfrated it by examples which, imitated fince by men of ability and reputation, may in time beftow a new form on aftronomy.

He treated, in all it's extent, the naval fcience; in an elaborate work, to which an inteligent analyfis ferves as bafis, and in which queftions of the greateft difficulty are fubjected to this general and fertile method, which he underftood fo well to create and to employ. He publifhed, many years afterward, on the fame fubject, an elementary abridgment of this treatife, containing, under the fimpleft form, every thing ufeful in practice, and neceflary to be known by perfons who devote themfelves to the marine fervice. This work, though defigned by the Author merely for the fchools of the Ruffian empire, procured for him a liberal gratification from the King of France, who judged, that labours beneficial to mankind demanded the grateful acknowledgments of all Sovereigns, and who wifhed to demonftrate to Europe, from one extremity to another, that talents fo rare could neither be overlooked, nor remain unrewarded. Euler was abundantly fenfible of the value of this mark of refpect from a great Prince ; and it derived an additional charm, in his eyes, from: the hand through which it was tranfmitted, that of Mr: Turgot, a minifter univerfally refpected for his talents and for his virtues; a man formed for commanding opinion, rather than following it, and whofe fuffrage, ever dictated by truth, and never by the defire of attracting to himfelf the applaufe of the public, might be an acceptable piece of flattery, even to a wife man, too much accuitomed to glory to be fill awake to the voice of fame.

In men of a fuperior genius, extreme fimplicity of character may eafily confift with thofe qualities of mind, which moft forcibly announce ability and delicacy of feeling. Euler, accordingly; notwithiftanding that fimplicity which never forfook him, knew; however, to diftinguifh with a fagacity, always indulgent it is true, the homage of enlightened admiration from that which vanity lavifhes on great men, to fecure to itfelf at leaft the merit of enthufiafm.

His dioptrical refearches are founded on an analyfis lefs profound, and we are tempted to give him credit for it, as being a kind of facrifice. The different rays of which a folar ray is formed, fubfift in the fame medium of different refractions; feparated thus from adjacent rays, they appear fingle, or lefs blended, and give the fenfation of the colour proper to them. This refrangibility varies in different mediums for every ray, and in conformity to a law which is not the fame with that of the mean refraction in thefe mediums. This obfervation fuggefted a belief, that two unequal prifms, and of different fubftances, combined, might divert a ray from it's direction, without decompounding it, or rather by replacing the elementary rays, by refraction, in a parallel direction. On the truth of this conjecture might depend, in telefcopes, the deftruction of the iris, which colcurs objects viewed through lenticular glaffes. Euler was convinced of the poffibility of fuccefs, conformably to this metaphyfical idea, that, if the eye is compofed of different bumours, it is only in
she vicw of deftroying the affect of the aberraition of refrangibility. The only thing requifite, thercfore, was an attempt to imitate the operation of nature, and he propofed the means of execution accoiding to a theory which he had formed. His firft eflays induced naturalifts to attend to an object which they fecmed to have neglected. Their experiments did not correfpond to Euler's theory, but they confirmed the views he entertained refpecting the perfection of telefcopes. And, inftructed by thefe, in the laws of difperfion, in different mediums, he abandoned his firt ideas, fubjected to calculation the refult of their experiments, and enriched dioptrics with analytical formules, fimple, commodious, general, and applicable to inftruments of every poffible conftruction.

We have, befides, fome effays of Euler, on the general theory of light, the phenomena of which he endeavoured to reconcile with the laws of the ofcillations of a fluid; becaufe the lypothefis of the emiffion of rays in a ftraight line, appeared to him to prefent infurmountable difficulties. The theory of the loadfone, that of the propagation of fire, the laws of the cohefion of bodies, and thofe of friction, furnifhed him, likewife, with fubjects of ingenious calculations, but, unfortunately, fupported by hypothefis, rather than by experiment.

The calculation of probabilities and political arithmetic were farther objects of his indefatigable application. I fhall here only mention his refearches
on bills of mortality, and the means of deducing them from phenomena with greater exactnefs; his method of ftriking a medium from the obfervations made ; his calculations refpecting the eftablifhment of a reverfionary fund, in the view of fecuring to widows, or orphans, either a fixed fum, or an annual revenue, payable after the death of a hufband or father; an ingenious and humane method, devifed by philofophic geometricians to counterbalance the moral evil refulting from the fettlement of life-annuities, and to convert, to the relief of families, the fmalleft favings from the principal's daily earnings, or from the revenue of a commiffion, a place or a penfion.

We have feen in the elogium of Daniel Bernouilli, that he had divided with Euler alone the glory of having carried off thirteen prizes, propofed by the Academy of Sciences: They often contended for the fame object, and occupied the fame ground: and the honour of triumph over a competitor was likewife divided between them ; but this rivalfhip never encroached on the expreffions of reciprocal efteem, nor cooled the ardor of mutual friendfhip. On ex: amining the fubjects for which the one or the other obtained the victory, we find that fuccefs depended principally on the character of talent peculiar to each. When the queftion required addrefs in the manner of taking it up, a dexterous application of experiment, or new and ingenious phyfical views, Daniel Bernouilli had the advantage : but did it pre-
fent difficulties, which profound and accurate calculation could refolve; was it neceffary to create a new method of analyfis, victory declared for Euler. Were any one fo prefumptuous as pretend to judge between them, he would find that he had to pronounce, not between two men, but between minds of a different genius, between two methods of employing genius.

I fhould have conveyed but a very imperfect idea of Euler's fertility of invention, unlefs I added to this faint fketch of his labours, that there are very few fubjects of importance, once treated by him, that he did not retrace; nay, fo far as to recompofe his firf work feveral times over. Sometimes he fubftituted a direct and analytical method, in place of one more indirect: fometimes he extended his firft folution to cafes which had at firft efcaped him; adding almoft always new examples, which he knew how to felect with fingular fkill among thofe which prefented, or fome ufeful obfervation, or curious remark.

The intention merely of giving to one of his productions a form more methodical, of rendering it fomewhat more luminous, of befowing on it a higher degree of fimplicity was to him motive fufficient for engaging in labours incredible. Never did geometrician write fo much, and no one ever carried his works to fuch a height of perfection. Wrhen he publifhed a memoir on a new fubject, he fimply explained the track which he purfued; he pointed out Yor. I. d
to his pupils it's intricacies and aberrations, and hav* ing, with fcrupulous exactnefs, made them accom. pany the progrefs of his own mind, in his firft effays, he fhewed them afterwards how he had been enabled to trace a fimpler path. It is evident, that he preferred the inftruction of his difciples to the filly fatisfaction of dazzling them by his own fuperiority; and that he did not believe he had done enough for fcience, unlefs he added, to the new truths with which he was enriching it, a candid expofition of the ideas which led to difcovery.

On reading the life of a great man, whether it be a conviction of the imperfection attached to frail humanity; whether it be, that the juftice of which we are capable, does not rife fo high as to induce us to acknowledge a fuperiority for which nothing can be an adequate compenfation; or, finally, whether it be, that the idea of perfection in another mortifies, or humbles us fill more than that of his greatnefs, but fome how or another it feems neceffary tor us to find out fome weak part; we hunt after the difcovery of a defect in him, which may reconcile us to ourfelves; and we are involuntarily difpofed to call in queftion the impartiality of the Biographer, unlefs he points out the weak part, unlefs he withdraws the impertinent veil which conceals the defect.

Euler fometimes appeared to be taken up with the mere pleafure of calculation, and to confider the point of mechanics, or phyfics, which he was examining, only as an occafion of exercifing his genius, and
of following the bent of his reigning paffion. Some of the learned have accordingly accufed him of lavifhing his talent for calculation on phyfical hypothefes, or even on metaphyfical principles, of which he had not fufficiently examined either the probability or the folidity. He has likewife been accufed of depending too much on the refources of calculation, and of having neglected thofe with which he might have been fupplied, by the examination of the very queftions which he propofed to refolve.

We muft admit, that the firft of thefe charges is not altogether deftitute of foundation. In Euler, undoubtedly, the metaphyfician, or even the naturalift was not fo great as the geometrician; and we are conftrained to regret, that in many parts of his works, thofe, for inftance, which he compofed on the naval fcience, on artillery, have been of little ufe, except to the progrefs of the fcience of calculation.

But the fecond charge appears by no means fo well founded. We obferve uniformly, through all the works of Euler, an unremitting effort to add to the riches of analyfis, to extend, and to multiply the applications of it : at the fame time that it appears to be his only inftrument, we fee clearly that it is his wifh to make it univerfally fo. The natural progrefs of the mathematical fciences muft have, in time, brought about this revolution; but he faw it, if I may fay fo, completed under his own eye: to his genius we are indebted for it ; and it has been the
reward of all his exertions and difcoveries. Accord. ingly, even when he appears to be mifapplying analyfis, and exhaufting all it's fecret fores in refolving a queftion, of which a few reflections, foreign to calculation, would have given him an eafy and fimple folution, he was frequently only aiming at a demon. ftration of the power and refources of his art; and he merits forgivenefs at leaft, if fometimes, while he feemed taken up with another fcience, it was fill to the progrefs and propagation of analyfis that his attention was devoted; and the revolution which this has effected in the world of fcience, is one of his firft claims on the gratitude of mankind, and the faireft title to glory.

I thought myle fobliged not to interrupt the detail of Euler's fcientific purfuits, by a recital of the few and fimple events of his life.

He fettled at Berlin in 1741 , and remained there till 1766.

The Princefs d^{\prime} Anbalt Deffau, niece to Frederick II. King of Pruffia, was defirous of receiving from him fome lefons in natural philofophy. Thefe leffons have been publifhed, under the title of letters to a german princess, a work ineftimable for the fingularly clear light in which he has difplayed the moft important trutbs of mechanics, of phyfical-aftronomy, of optics, and of the theory of found; and for the ingenious views; lefs philofophical but more fage, than thofe which have made Fontenelle's Plurality of Worlds outlive the Syfem of Vortices.

The name of Euler, fo great in the fphere of fcience; the refpectful idea attached to his works, employed in unfolding all that is intricate and abftract in analyfis, diffufe a fingular charm over thefe letters, fo fimple, and fo eafy. Thofe who have not ftudied mathematics; aftonifhed, perhaps flattered, at being able to underftand a work of Euler, will feel grateful to him for having defcended to their level; and thefe elementary details of the fciences acquire a fpecies of greatnefs, from their approximation to the glory, and the genius, of the illuftrious man who traced them.

The King of Pruffia employed Euler in calculations refpecting the coinage; on conftructing the aqueduct of Sans-Soucis ; on the formation of feveral inavigable canals. That great Prince had a mind too enlarged to believe that extraordinary talents, and profound knowledge, ever could be ufelefs or dan: gerous qualities ; and the felicity of being able to do good, an advantage referved by nature for ignorance and mediocrity.

In 1750, Euler made a journey to Frankfort, to receive his mother, then a widorr, and to conduct her to Berlin. He had the happinefs to preferve her till 1761 . For eleven years, then, fhe enjoyed the glory of her highly diftinguifhed fon, in the way that the maternal heart knows how to enjoj, and was ftill more happy, perhaps, in the tender and affiduous expreflions of filial affection, the value of which that glory greatiy enhanced.

During his refidence at Berlin, Euler, united to Mr. de Maupertuis by the ties of gratitude, thought himfelf obliged to defend the principle of the leaft action, on which the Prefident of the academy of Pruffia had founded the hope of a reputation fo exalted. The means which Euler thought proper to ufe could hardly have been employed by any other perfon but himfelf; it was to refolve, on this principle, feveral of the principal and moft difficult problems of mechanics. Thus, in the age of fable, the Gods vouchfafed to forge, for their favourite warriors, armour impenetrable by all the blows of their enemies. It were to have been wifhed, that Euler's gratitude had confined itfelf to a protection fo noble, and fo worthy of himfelf; but it cannot be denied, that there is an infufion of afperity, rather too ftrong, in his replies to Konig; and with forrow we are conftrained to recognize a great man, among the enemies of an unfortunate and perfecuted fcholar. Happily for Euler, the whole tenor of his life fhelters him from a more \{erious fufpicion. But for that fimplicity, that indifference to the voice of fame, which he uniformly manifefted, it might have been fufpected, that the pleafantries of an illuftrious partifan of Kanig (pleafantries which Voltaire himfelf has juftly configned to oblivion) had fomewhat foured the temper of the gentle and fage geometrician ; but if on this occafion he is chargeable with a fault, it muft be imputed folely to an excefs of gratitude; and if once in his life he acted wrong, the motive at leaft is refpectable.

The Ruffian forces having, in 1760 , penetrated into the marches of Brandeburg, plundered a farm of Euler's, near Charlottenburg : but Gencral Tottleben had not come to make war on the fciences. Being informed of the lofs which Euler had fuftained, he haftened to repair it, by ordering payment far beyond the real value of the property, and having communicated to the Emprefs Elizabeth, an account of this involuntary difrefpect, fhe was pleafed to add a gratuity of four thoufand florins to an indemnification already more than fufficient. This anecdote is not fo generally known as it deferves to be, while we quote, with enthufiaftic admiration; fimilar actions tranfmitted to us from antiquity. Is not this difference in the judgments we form, a proof of the happy progrefs of the human fpecies, which certain authors fill obftinately perfevere in denying; apparently to fhun the imputation of having contributed to it?

The government of Ruffia had never treated Eu* ler as a ftranger. Notwithitanding his abfence, part of his falary was always regularly paid; and in $\mathbf{1} 766$, the Emprefs having given him an invitation to return to Peterfburg, he complied.

In 1735, the exertion occafioned by an aftronomical calculation, for which other academicians demanded feveral months, but completed by him in a few days, brought on an indifpofition, which iffued in the lofs of one of his eyes. He had reafon to apprehend a totallofs of fight, if he continued to ex-
pofe himfelf in a climate, the influence of which was unfavourable to his conftitution. The intereft of his family got the better of this apprehenfion ; and if we reflect that, to Euler, ftudy was an exclufive paffion, we thall readily conclude, that few examples of paternal tendernefs have more completely demonftrated, that it is the moft powerful, and the fweeteft of all our affections.

A few years after, he was overtaken by the calamity which he forefaw and dreaded: but happily for himfelf, and for the fciences, he preferved fill the faculty of diftinguifhing large characters traced on a flate with chalk. His fons, his pupils, copied his calculations ; wrote, as he dictated, the reft of his memoirs ; and if we may form a judgment of thefe from their number, and frequently from the genius transfufed through them, it will appear abundantly credible, that from the abfence ftill more abfolute of all diftraction, and from the new energy which this conftrained recollection gave to all his faculties, he gained more, both as to facility and means of labour, than he lof by a diminution of fight.

Befides, Fuler, by the nature of his genius and his habits of life, had "even involuntarily laid up for himfelf extraordinary fupplies. On examining thofe great analytical formules, fo rare before his time, but fo frequent in his works, the combination and difplay of which unite fo much fimplicity and elegance, whofe very form pleafes the eye as well as the mind, it wili be evident, that they are not the re-
fult of a calcalation traced on paper, but that, produced entirely in the head, they are the creation of an imagination equally vigorous and active.

There exift in analyfis, and Euler grataty multiplied their number, formules of a common and almoft daily application; he had them always prefent to his mind, knew them by heart, repeated them in converfation; and Mr. d' Alembert, when he faw him at Berlin, was aftonifhed at an effort of memory, which demonftrated, that Euler poffeffed at once a ftrength and a clearnefs of recollection almofi incredible. At length his facility of calculation by the head was carried to fuch a degree as would exceed all belief, had not the hiftory of his labours accuftomed us to prodigies. He has been known, in the view of exercifing his little grandfon in the extraction of the fquare and cube roots, to have formed to himfelf the table of the fix firft powers of all numbers from I to 100, and to hare preferved it exactly in his memory. Two of his pupils had calculated as far as to the feventeenth term of a convergent feries, abundantly complicated; their refults, though formed after a written calculation, differed one unit at the fiftieth figure : they communicated this difference to their mafter : Euler went over the whole calculation in his head, and his decifion was found to be the true one.

From the time he loft his fight, his chief amufement was to make artificial magnets, and to give leffons in the mathematics to one of his grand-chil.
dren, who feemed to have a promifing difpofition to that fcience.

He made a point of fill going occafionally to the Academy, efpecially if delicate circumftances demanded his attendance, or when he deerned his prefence neceffary to the maintenance of liberty. It is eafy to conceive how much it is in the power of a perpetual prefident, appointed by the court, to difturb the peace of an Academy, and how much fuclt a feminary has to apprehend from one who, not being elected from their own number, does not feel himfelf reftrained even by a fenfe of that fupport which his reputation needs from the fuffrages of his colleagues. How is it poffible for men, employed folely in calm literary purfuits, and underftanding no language but that of the fciences, to defend themfelves in fuch a cafe; efpecially if ftrangers, unconnected; fir from their country, they derive their whole fupport from that government, to which they would apz peal for juftice againft an imperious prefident, whom that very government had placed over them.

But there is a degree of glory, which places a man beyond the reach of fear: it is, when all Europe would roufe itfelf to refent a perfonal injury offered to a great man, that he can without rifk oppofe to injuftice the authority of his reputation, and elevate, in fupport of the fciences, a voice which will make itfelf heard. Euler, gentle, modeft as he was, was fenfible of his power, and oftener than once made a very happy ufe of it.

In 1771 , the city of Peterfourg fuffered feverely from a terrible conflagration: the flames had caught the houfe of Euler. One Peter Grimm, a native of Bâle, whofe name well deferves to be tranfmitted to pofterity, apprized of the danger of his illuftrious compatriot, now blind and enfeebled, burft through the midft of the fire, reaches his apartment, places him on his fhoulders, and faves Euler's life, at the hazard of his own. His library, his furniture was deftroyed, but the zeal and exertions of Count Orloff preferved his manufcripts. The attention paid to this, at the height of a calamity fo dreadful, is the mof honourable and flattering homage which pulslic authority could have offered to fcience. The houfe of Euler was one of the Emprefs's gifin to him; a fimilar act of munificence fpeedily repaired the lofs.

He had by his firft wife thirteen children, eight of whom died young. His three fons furvived him, but he had the misfortune to lofe both his daughters, the laft year of his own life. Of thirty-eight grandchildren, twenty-fix were living at the time of his death. In ${ }^{1776}$ he entered a fecond time into the married ftate, by efpoufing a Mifs Gfell, fifter to his firft wife's father. He had always retained all that fimplicity of manners, of which his father's houfe had fet the example. As long as his fight remained, he every evening collected, to domeftic devotion, his grand-childiren, his domeftics, and fuch of his pupils as lodged in the houfe; he read to them a portion
of Scripture, and fometimes accompanied it with an expofition.

He was of a very religious turn of mind. He publiffied a new demonftration of the exiftence of God, and of the fpirituality of the foul: this laft treatife has been admitted as a ftandard book into feveral colleges of divinity. With fcrupulous exactnefs he adhered to the religion of his country, which is rigid Calvinifm : and it does not appear that, after the example of moft fcholars of the proteftant perfuafion, he ever took the liberty of adopting peculiar ideas, or of forming a fyftem of religion for himfelf.

His erudition was very extenfive, efpecially in the hiftory of mathematics. It is alleged that he had carried his curiofity fo far as to acquire the knowledge of the proceffes and rules of aftrology; and that he had even made fome applications of them. However, when in 1740 he was commanded to calculate the nativity of Prince Ivan, he excufed himfelf, by reprefenting that this was the proper bufinefs of Mr. Kraaff, in quality of roval aftronomer. Credulity of this fort, which we are aftonifhed to find at fo recent a period in the Court of Ruffia, prevailed, the age before, in all the Courts of Europe: thofe of Afia have not yet fhaken off this abfurd yoke, and it muft be acknowledged; that if we except the common maxims of mora: lity, there is no one truth which can boaft of hav: ing been fo generally adopted, and through fuch a fucceffion
frucceflion of ages, as certain ridiculous or pernicious errors.

Euler had fudied almoft every branch of phyfics? anatomy, chemiftry, botany ; but his fuperiority in mathematics did not permit him to attach the flighteft importance to his proficiency in any other branch of fcience, though it was fuch as might have induced a perfon more fufceptible of the flattery of felf-love to afpire to the title of an univerfal fcholar:

The fudy of ancient literature, and of the learned languages, had formed part of his education : he retained a tafte for thefe to the end of life, and never forgot any thing he had once acquired; but he had neither time nor inclination to profecute farther his attainments in claffic literature. Fie had not fo much as read the modern poets, but knew the Eneid by heart. Euler, however, did not lofe fight of the mathematics, even in reciting the verfes of Virgil. Every thing concurred to prefent him with this darling object of his thoughts, and we find among his works, an ingenious memoir on a queftion in mechanics, the firtt idea of which, he tells us, was fuggefted by a line of Virsil.

It has been faid that, to men of great talents, the pleafure of exertion is a reward ftill more gratifying than glory itfelf ; were it neceifary to prove this truth by examples, that of Euler would put it beyond a doubt.

In his moft profound difcuffions with celebrated geometricians, he never betrayed the flighteft fymp-
tom which could excite a fufpicion of his being actuated by motives of felf-love. He difcovered no eagernefs to affert his title to the merit of his difcoveries; and if any thing in his works was claimed as the difcovery of another, he was at pains to repair the involuntary offence, even without enquiring too fcrupuloufly, whether rigid juftice demanded an abfolute renunciation. Did any one pretend to have detected him in error, if the charge was unfounded, he forgot it ; if juft, he corrected it, without ftopping to obferve that, in many cafes, the merit of thofe who boafted of having made the detection, confifted wholly in an eafy application of the methods which he himfelf had taught them, to theories, the greateft difficulties of which he had before-hand removed.

Men of middling ability almoft always endeavour to make themfelves of confequence, by an affected feverity, proportional to the lofty idea which they wifh to convey of their underftanding, or of their genius. Inexorable to all that rifes above them, they give no quarter even to inferiority; fo that we are tempted to fay, a fecret confcioufnefs fhews them the neceffity which they are under of lowering others. An inftinctive emotion engaged Euler, on the contrary, to celebrate genius the moment that it's firft exertions had challenged his attention, and without waiting till public opinion courted the fanction of his fuffrage.

He has been known to employ his time in refolving problems
problems already folved, which was to procure for him, at moft, the inferior praife of greater elegance, or exactnefs of method; and this with the fame ardor and perfeverance that he could have exerted in the profecution of a new truth, the difcovery of which might hâve brought him an increafe of reputation. Befides, had an ardent defire of glory actually exifted in his breaft, it would have been impoffible for him, fuch was the franknefs of his character, to conceal it's emotions. But the glory which he was fo little folicitous to purfue, fought and found him out. The fingular fertility of his genius was a ftriking phenomenon, even to perfons who were not in a condition to underftand his works.

Though wholly devoted to geometry, his reputation challenged the attention of men little verfed in that fcience; and he appeared in the eyes of all Europe not only the firf of geometricians, but a great man. It is the cuftom of Ruffia to beftow military titles on men wholly unconnected with the fervice. This is paying homage to a prejudice whick would reprefent the profeffion of a foldier as the only title to nobility, but the practice is at the fame time a direct acknowledgment of it's complete falfity. Some of the Literati have even arrived at the rank of Major-General: Euler never had, and indeed never would have, any diftinction of this fort; but what title in the power of Princes to beftow, could do honour to the name Euler? And then, regard for the prefervation of the natural rights of humanity,
humanity, impofes, in fome meafure, the duty of fetting the example of a fage indifference to thefe baubles of human vanity, fo childifh and yet fo dangerous.

Moft of the Princes of the North, to whom he was perfonally known, gave him marks of their efteem, or rather of a veneration which they could not with-hold from the union of a virtue fo fimple with a genius fo vaft and elevated. When the Prince Royal of Pruffia travelled to Peterfburg, he did not wait for a vifit from Euler, but went firft to his houfe, and paffed fome hours by the bed-fide of the venerable old man, holding his hands in his own, with one of Euler's grand-children in his lap, whom early fymptoms of a genius for geometry had rendered the particular object of paternal affection.

All the noted mathematicians of the prefent day are his pupils: there is no one of them who has not formed himfelf by the ftudy of his works, who has not received from him the formules, the method which he employs; who is not directed and fupported by the genius of Euler in his difcoveries. This honour he owes to the revolution effected in the mathematical fciences, by fubjecting all to analyfis; to his indefatigable application, which has enabled him to embrace the whole extent of thefe fci-. ences; to the order in which he has arranged his great works; to the fimplicity, to the elegance, of his formules; to the clearnefs of his methods and demonftrations;
demonftrations ; and all this greatly enhanced, by the multiplicity and the choice of his examples. Neither Nerwton, nor Defcartes, whofe influence was once fo powerful, has arrived at this pitch of glory; and hitherto, Euler alone, of geometricians, has poffeffed it entirely, and without a rival.

But, as Profeffor, he has formed pupils in a peculiar fenfe his own. Among theef, we mention his eldeft fon, whom the Academy of Sciences elected to fupply his place, without any apprehenfion that this honourable fucceffion granted to the name of Euler, as to that of Bernouilli, could ever become a dangerous precedent: a fecond fon, now engaged in the fudy of medicine, but who, in his youth, obtained from that Academy the prize propofed for determining the alterations of the mean motion of the planets; Mr. Lexell, whofe premature death has juft left a blank in the world of fcience; and, to mention no more, Mr. Fufs, the youngeft of his icholars, and the companion of his laft labours; who, fent from Bâle to Euler by Daniel Bernouilli, has, by his works, done credit to Bernouilli's recommendation, and Euler's inftructions, and who, after having paid public homage in the Academy of Peterfburg, to his illuftrious mafter, married his granddaughter.

Of fixteen profeffors belonging to the Academy of Peterfburg, eight had been formed by him ; and all of them, well known/from their productions, and decorated with academic honours, value themfelves
on being able to add, to all the reft, that of difciple to Euler.

He had retained all his facility of thought, and, apparently, all his mental vigour : no decay feemed to threaten the fciences with the fudden lofs of their great ornament. On the 7 th of September, 1783 , after amufing himfelf with calculating on a flate the laws of the afcending motion of air-balloons, the recent difcovery of which was then making a noife all over Europe, he dined with Mr. Lexell and his family, talked of Herfchell's planet, and of the calculations which determine it's orbit. A little after he called his grand-child, and fell a playing with him as he drank tea, when fuddenly, the pipe, which he held in his hand, dropped from it, and he ceafed to calculate and to breathe.

Such was the end of one of the greateft and moft extraordinary men ever produced by the hand of nature : a man whofe genius was equally capable of the greateft efforts, and of the moif unwearied application; who multiplied his productions far beyond what could have been expected from powers merely human, and was, neverthelefs, original in every one; whofe head was inceffantly employed, and his fpirit always tranquil; who, finally, by a defitiny unfortunately too rare, united, and that defervedly, a felicity hardly ever interrupted, to a glory which no one ever difputed with him.

His death was confidered as a public lofs, even in the country which he inhabited. The Academy of

Peterfburg went into deep mourning for him, and voted a marble buft of him, at their own expence, to be placed in their Affembly-Hall. An honour ftill more diftinguifhed had already been conferred on him, by that learned body, in his life-time. In an allegorical painting, a figure of Geometry is reprefented leaning on a tablet, exhibiting mathematical calculations, and the characters infcribed, by order of the Academy, are the formules of his new theory of the moon. Thus, a country which, at the beginning of the prefent century, we confidered as fcarcely emerged out of barbarifm, is become the inftructor of the moft enlightened nations of Europe, in doing honour to the life of great men, and in embalming their memory: it is fetting thefe nations an example, which fome of them may blufh to reflect, that they have had the virtue neither to propofe, nor to imitate.

LETTERS

on

DIFFERENT SUBJECTS

IN

PHYSICS AND PHILOSOPHY.

LETTER I.

Of Magnitude, or Extenfion.

Madam,

THE hope of having the honour to communicate, in perfon, to your Highnefs, my leffons in Geometry, becoming more and more diftant, which is a very fenfible mortification to me, I feel myfelf impelled to fupply perfonal inftruction by writing, as far as the nature of the objects can permit.

I begin my attempt, by affifting you to form a juft idea of magnitude ; "producing, as examples, the fmalleft as well as the greateft extenfions of matter actually difcoverable in the fyftem of the Univerfe. And firft, it is neceffary to fix on fome one determinate divifion of meafure, obvious to the fenfes, and of which we have an exact idea, that of a foot, for inftance. The quantity of this, once eftablifhed, and rendered familiar to the eye, will enable us to form the idea of every other quantity, as to length, great

Vol. I.
B
or
or fmall; the former, by afcertaining how many feet it contains; and the latter, by afcertaining what part of a foot meafures it. For, having the idea of a foot, we have that alfo of it's half, of it's quarter, of it's twelfth part, denominated an inch, of it's hundredth, and of it's thoufandth part; which is fo fmall as almoft to efcape the fight. But it is to be remarked, that there are animals, not of greater extenfion than this laft fubdivifion of a foot, which, however, are compoied of members through which the blood circulates, and which again contain other animals, as diminutive compared to them, as they are compared to us. Hence it may be concluded that animals exift, whofe fmallnefs eludes the imagination; and that thefe again are divifible into parts inconceivably finaller. Thus, for example, though the ten thoufandth part of a foot be too finall for fight, and, compared to us, ceafes to be an object of fenfe, it neverthelefs furpaffes in magnitude certain complete animals; and muft, to one of thofe animals, were it endowed with the power of perception, appear extremcly great.

Let us now make the tranfition from there minute quantities, in purfuing which the mind is loft, to thofe of the greateft magnitude. You have the idea of a mile;* the diftance from hence to Magdeburg is computed to be 18 miles $; \dagger$ a mile contains 24,000 feet, and we employ it in meafuring the diftance of the different regions of the globe, in order to avoid

[^0]numbers inconceivably great, in our calculations, which muft be the cafe if we ufed foot inftead of mile. A mile then, containg 24,000 feet, when it is faid that Magdeburg is 18 miles from Berlin, the idea is much clearer, than if the diftance of thefe two cities were faid to be 432,000 feet: A number fo great almoft overwhelms the underfanding. Again, we fhall have a tolerably juft idea of the magnitude of the earth, when we are told that it's circumference is about 5,400 miles. And the diameter being a ftraight line paffing through the centre, and terminating, in oppofite directions, in the furface of the fphere, which is the acknowledged figure of the earth, for which reafon alfo we give it the name of globe, the diameter of this globe is calculated to be 1720 miles;* and this is the meafurement which we em ploy for determining the greateft diftances difcoverable in the heavens. Of all the heavenly bodies the moon is neareft to us, being diftant only about 30 diameters of the earth, which amount to 51,600 miles, \dagger or $1,238,400,000$ feet ; but the firft computation of 30 diameters of the earth, is the cleareft idea. The fun is about 300 times farther from us than the moon; and when we fay his diftance is 9,000 diameters of the earth, we have a much clearer idea, than if it were expreffed in miles, or in feet.
> * About 7,920 Englifh miles. The diameter of our earth is really 7,964 Englifh miles, it's circumference 25,020. The mean diftance of the moon is 240,000 miles, which fcarcely exceeds the 400 th part of the fun's mean diftance, or $93,720,000$ miles.
> \dagger About 237,360 miles Englifh.

You know that the earth performs a revolution round the fun in the fpace of a year, but that the fun remains fixed. Befide the earth, there are five other fimilar bodies, named planets, which revolve round the fun; two of them at fmaller diftances, Mercury and Venus; and three at greater, namely Mars, Jupiter and Saturn. All the other fars which we fee, comets excepted, are called fixed; and their diftance from us is incomparably greater than that of the fun. The diftances are undoubtedly very unequal, which is the reafon that fome of thefe bodies appear greater than others. But the neareft of them is, unqueftionably, above 5,000 times more diftant than the Sun: it's diftance from us, accordingly, exceeds $45,000,000$ of times the earth's diameter, that is $77,400,000,000$ of miles; * and this again multiplied by 24,000 will give that prodigious diftance expreffed in feet. And this, after all, is the diftance only of thofe fixed ftars which are the neareft to us; the moft remote which we fee, are perhaps a hundred times farther off. It is probable, at the fame time, that all thefe ftars taken together, conftitute only a very fmall part of the whole univerfe, relatively to which thefe prodigious diftances are not greater than a grain of fand compared to the earth. This immenfity is the work of the Almighty, who governs the greateft bodies and the finallef. \dagger

$$
\text { Berlin, 19tli April, } 1760 .
$$

[^1]
L E T TER II．

Of Velocity．

FLATTERING myfelf that your Highnefs may be pleafed to accept the continuation of my in－ ftructions，a fpecimen of which I took the liberty of prefenting to you in a former letter，I procced to un－ fold the idea of velocity，which is a particular fpecies of extenfion，and fufceptible of increafe and of di－ minution．When any fubftance is tranfported，that is，when it paffes from one place to another，we af－ cribe to it a velocity．Let two perfons，the one on horfeback，the other on foot，proceed from Berlin to Magdeburg，we have，in both cafes，the idea of a certain velocity；but it will be immediately affirmed， that the velocity of the former exceeds that of the latter．The queftion then is，Wherein confifts the
（which are with great propriety omitted by the philofophic French editor of the work，twenty－feven years afterwards）and who is now crowning woith fuccefs the arms in whhich we are fo dceply interefted． This is，no doubt，a dreadful＂falling off＂from the majefty of the fubject．Who cares now about the fuccefs of the Pruffian arms in 1760？But philofophers，as well as other men，are under the dominion of local and temporary circumftances．Frederick II， was then in the zenith of his glory；Euler was living at Berlin， and giving leffons in philofophy to the niece of that illuftrious prince．Is it to be wondered，then，that he fhould fink for a mo－ ment into the courtier，and offer a drachm of incenfe to a great lady ；or，that a foul fo uniformly devout，fhould acknowledge the providence of the Almighty in a particular inftance？
difference which we obferve between thefe reveral degrees of velocity? The road is the fame to him who rides and to him who walks : but the difference evidently lies in the time which each employs in performing the fame courfe. The velocity of the horfeman is the greater of the two, as he employs lefs time on the road from Berlin to Magdeburg; and the velocity of the other is lefs, becaufe he employs more time in travelling the fame diftance. Hence it is clear, that in order to form an accuyate idea of velocity, we muft attend at once to two kinds of quantity, namely, to the length of the road, and to the time employed. A body, therefore, which in the fame time paffes through double the fpace which another body does, has double its velocity; if, in the fame time, it paffes through thrice the diftance, it is faid to have thrice the velocity, and fo on. We fhall comprehend, then, the velocity of a body, when we are informed of the fpace through which it paffes in a certain quantity of time. In order to know the yelocity of my pace, when I walk to Lytzow,* I have obferved that I make 120 fteps in a minute, and one of my feps is equal to two feet and a half. My velocity, then, is fuch, as to carry me 300 feet in a minute, and a fpace fixty times greater, or 18,000 feet in an hour, which however does not amount to a mile, for this, being 24,000 feet, would require an hour and 20 minutes. Were I , therefore, to walk from hence to Magdeburg, it would take exactly 24 hours. This conveys an accurate idea of the velo-

[^2]city with which I am able to walk. Now it is eafy to comprehend what is meant by a greater or lefs velocity. For if a courier were to go from hence to Magdeburg in 12 hours, his velocity would be the double of mine: if he went in eight hours, his velocity would be triple. We remark a very great difference in the degrees of velocity. The tortoife furnifhes an example of a velocity extremely fmall. If fhe advances only one foot in a minute, her velocity is 300 times lefs than mine, for I advance 300 feet in the fame time. We are likewife acquainted with velocities much greater. That of the wind admits of great variation. A moderate wind goes at the rate of 10 feet in a fecond, or 600 feet in a minute; its velocity therefore is the double of mine. A wind that runs 20 feet in a fecond, or 1200 in a minute, is rather ftrong; and a wind which flies at the rate of 50 feet in a fecond is extremely violent, though its velocity is only 10 times greater than mine, and would take two hours and twenty-four minutes to blow from hence to Magdeburg.

The velocity of found comes next, which moves 1000 feet* in a fecond, and 60,000 in a minute. This velocity, therefore, is 200 times greater than that of my pace; and were a cannon to be fired at Magdeburg, if the report could be heard at Berlin, it

[^3]would arrive there in feven minutes. A cannon ball moves with nearly the fame velocity; but when the piece is loaded to the utmof, the ball is fuppofed capable of flying 2,000 feet in a fecond, or 120,000 in a minute. This velocity appears prodigious, though it is only 400 times greater than that of my pace in walking to Lytzow; it is at the fame time the greateft velocity known upon earth. But there are in the heavens velocities far greater, though their motion appears to be extremely deliberate. You know that the earth turns round on it's axis in 24 hours : every point of it's furface, then, under the equator, moves 5,400 miles* in 24 hours, while I am able to get through only 18 miles. \dagger It's velocity is accordingly 300 times greater than mine, and lefs notwithftanding than the greatef poffile velocity of a cannon ball. The earth performs it's revolution round the fun in the fpace of a year, proceeding at the rate of 128,250 miles \ddagger in 24 hours. It's velocity, therefore, is 18 times more rapid than that of, a cannon ball. The greateft velocity of which we have any knowledge is, undoubtedly, that of light, which moves $2,000,000$ of miles \oint every minute, and exceeds the velocity of a cannon ball 400,000 times. 22d April, 1760,

[^4]
LETTER III.

Of Sound, and it's Velocity.

THE elucidations of the different degrees of velocity, which I have had the honour to lay before your Highnefs, carry me forward to the examination of found, or noife in general. It muft be remarked, that a certain portion of time always intervenes before found can reach our ears, and that this time is longer in proportion to our diftance from the place where the found is produced; a fecond of time being requifite to convey found 1000 feet.

When a cannon is fired, thofe who are at a diftance do not hear the report for fome time after they have feen the flafh. Thofe who are a mile, or 24,000 feet diftant, hear not the report till 24 feconds after they faw the flame. You muft no doubt have frequently remarked, that the noife of thunder reaches not the ear for fome time after the lightning: and it is by this we are enabled to calculate our diftance from the place where the thunder is generated. If, for example, we obferve that 20 feconds intervene between the flafh and the thunder-clap, we may conclude that the feat of the thunder is 20,000 feet diftant, allowing 1000 feet of diftance for every fecond of time. This primary property leads us to inquire, In what found confifts? Whether it's nature is fimilar to that of fmell, that is, whether found iffues from the body which produces it, as fmell is emitted
emitted from the flower, by filling the air with fubtile exhalations, proper to affect our fenfe of fimelling. This opinion was formerly entertained, but it is now demonffrated, that from a bell ftruck nothing proceeds that is conveyed to our ear, and that the body which produces found lofes no part of it's fubftance. When we look upon a bell that is ftruck, or the ftring of an intrument when touched, we perceive that thefe bodies are then in a fate of trembling or agitation, by which all their parts are affected; and that all bodies, fufceptible of fuch an agitation of their parts, likewife produce found: Thefe fhakings or vibrations are vifible in the ftring of an inftrument when it is not too fmall; the tenfe ftring A C B paffes alternately into the fituation AMB and A N B. (See plate I. fig. I. in which I bave reprefented thefe vibrations much more obvious to fenfe than they are in fact.) It muft be further obferved, that thefe vibrations put the adjacent air into a fimilar vibration, which is fucceffively communicated to the more remote parts of the air, till it come at length to frike our organ of hearing. It is the air, then, which receives thefe vibrations, and which tranfmits the found to our car. Hence it is evident, that the perception of found is nothing elfe but the impreffion made on our ear by the concuffion of the air, communicated to us through the organ of hear-ing; and when we hear the found of a ftring touched, nur ear receives from the air as many.ftrokes as the ftring, performs vibrations in the fame time. Thus, if the rtring performs 100 vibrations in a fe-
cond, the car likewife receives 100 ftrokes in the fame time; and the perception of thefe ftrokes is what we call found. When thefe ftrokes fucceed each other uniformly, or when their intervals are all equal, the found is regular, and fuch as is requifite to mufic. But when the ftrokes fucceed unequally, or when their intervals are unequal among themfelves, an irregular noife, incompatible with mufic, is the refult. On confidering fomewhat more attentively the mufical founds, whofe vibrations take place equally, I remark firf, that when the vibrations, as well as the ftrokes impreffed on the ear, are more or lefs frong, no other difference of found refults from it, but that of fronger or weaker, which produces the diftinction, termed by muficians, fortè Eo piano. But there is a difference much more effential, when the vibrations are more or lefs rapid, that is, when more or fewer of them are performed in a fecond. When one fring makes 100 vibrations in a fecond, and another ftring makes 200 vibrations in the fame time, their founds are effentially different; the former is lower or more flat, and the other higher or more fharp. Such is the real difference between the flat and fharp founds, on which all mufic hinges, and which teaches how to combine founds different in refpect of Ratnefs and fharpnefs, but in fuch a manner as to produce an agreeable harmony. In the flat founds there are fewer vibrations in the fame time than in the fharp founds; and every key of the harpfichord contains a certain and determinate number of vibrations, which are completed in a fecond.

Thus the note marked by the letter C ，＊makes nearly 100 vibrations in a fecond；and the note marked ${ }_{\bar{c}}$ makes 1600 vibrations in the fame fpace of time．A ftring which vibrates 100 times in a fe－ cond，will give precifely the note C ；and if it vi－ brated only 50 times，the note would be lower or more flat．But with regard to our ear，there are certain limits beyond which found is no longer per－ ceptible．It would appear that we are incapable of determining either the found of a ftring which makes lefs than 30 vibrations in a fecond，becaufe it is too low；or that of a ftring which would make more than 755^{2} in a fecond，becaufe fuch a note would be too high．
26th April， 1760.
＊The note C is that which is produced by touching the thick－ eft firing of a violoncello；the note $\overline{\bar{c}}$ is the fourth octave of the firft；accordingly，thefe two notes，reprefented by the ufual me－ thod of pricking mufic，are

Mr．Euler marks the progrefion of octaves thus：

	Ift octave，	2 d octave，	3 d octave，	4th octave．
C，or $u t$.	c.	$\overline{\mathrm{c}}$	$\overline{\mathrm{c}}$	$\overline{\overline{\mathrm{c}}}$

and in like manner for the other notes of the gamut；D．E．F． G．A．B．or re，$m i, f a, f o l, l a, \sqrt{l}$ ．
In writing the chromatic fcale，he employs the following figns：
C．Cs，D，Ds，E，F，Fs，G，Gs，A，B，H，c $u t$ ，$u t$ 区，$r e, r e$ 㜽，$m i, f a, f a$ 亓，fol，fol䓅，$l a, f i b, f i \neq, u t$ ．

LETTER IV.

Of Confonance and Difonance.

IRESUME my remark, that on hearing a fimple mufical found, our ear is ftruck with a feries of ftrokes equally diftant from each other, the frequency and number of which, in a given fpace of time, conftitute the difference which fubfifts between low notes and high : fo that, the finaller the number of vibran tions or frokes produced in a given time, fay a fecond, the lower we eftimate that note; and the greater the number of fuch vibrations, the higher is the note. The perception of a fimple mufical found may, therefore, be compared to a feries of dots equidiftant from each other, as If the intervals between thefe dots be greater or finaller, the found produced will be lower or higher. It cannot be doubted, that the perception of a fimple found is fomewhat fimilar or analogous to the fight of fuch a feries of dots equidiftant from each other: we are enabled thus to reprefent to the eye what the ear perceives on hearing found. If the diftances between the dots were not equal, or were thefe dots fcattered about confufedly, they would be a reprefentation of a confufed noife, inconfiftent with harmony. This being laid down, let us confider what effect two founds emitted at once muft produce on the ear. Firft, it is evident, that if two founds are equal, or if each performs the fame number of vibrations in
the fame time, the ear will be affected in the very fame manner as by a fingle note; and, in mufic, thefe two notes are faid to be in unifon, which is the fimpleft accord: we mean by the term accord the blending of two or more founds heard at once. But if two founds differ in refpect of low and high, we fhall perceive a mixture of two feries of ftrokes, in each of which the intervals are equal among themfelves, but greater in the one than in the other; the greater intervals comefponding to the lower note, and the fmaller to the higher. This mixture, or this accord of two notes, may be reprefented to the eyes by two feries of dots arranged on two lines AB and C D;

	1	2	3	4			6	7	8	9	10		
A	.		-	.			-	-	-	-	.		
C	.	-	-	-	.	-	.	-	.	-	-		
	1	2	3	4	5	6	7	8	9	10	11		

and in order to form a juft idea of thefe two feries, we muft have a clear perception of the order which fubfifts among them, or, in other words, of the relation between the intervals of the one line and of the other. Having numbered and marked the dots of each line, and placed No. I. under No. i ; thofe marked with the figure 2 , will not exactly correfpond, and fill lefs thofe marked 3 : but we find No. I I exactly over No 12: from which we difcover that the higher note makes 12 vibrations, and the other only ir. If we had not affixed the figures, the eye would hardly have perceived this order; it is the fame with the ear, which would with much
difficulty have traced it in the two notes which I have reprefented by two rows of dots. But in the following figure,
you difcover at the firft glance that the upper line contains twice as many dots as the under, or that the intervals in the under line-are twice as great as thofe of the upper. This is undoubtedly, next to unifon, the fimpleft of all cafes, in which you can at once difcover the order which fubfifts between thefe two feries of dots; and the fame thing holds with refpect to the two notes reprefented by thefe two lines of dots: the number of vibrations contained in the one will be precirely the double of the vibrations contained in the other, and the ear will eafily perceive the pleafing relation of thefe two founds; whereas, in the preceding cafe, it was extremely difficult, if not impofible, to difcriminate. When the ear readily difcovers the relation fubfifting between two notes, their accord is denominated confonance: and if it be very dificult, or even impofiible to catch this relation, the accord is termed diffonance. The fimpleft confonance, then, is that in which the high note produces precifely twice as many vibrations as the low note. This confonance, in the language of mufic, is called octave: every one knows what it means; and two notes which differ precifely an octave, harmonize fo perfectly, and poffefs fuch a complete refemblance, that muficians mark them by the fame letters. Hence it is that in church-mufic
the women fing an octave higher than the men, and yet imagine they are uttering the fame founds. You may eafily afcertain the truth of this by touching the keys of a harpfichord, when you will perceive with pleafure the delightful accord of all the notes which are juft an octave diftant, whereas any other two notes whatever will ftrike the ear lefs agreeably.

2gth April, 1760.

LETTER V.

Of Unifon and Octaves.

YOUR Highnefs has by this time remarked, that the accord which muficians call an octave, ftrikes the ear in a manner fo decided, that the flighteft deviation is eafily perceptible. Thus, having touched the Key marked F, that marked f, which is an octave higher, is eafily attuned to it, by the judg. ment of the ear only. If the ftring which is to produce this note be ever fo little too high or too low, the ear is inftantly offended, and nothing is eafier than to put the two keys perfectly in tune. Thus we obferve, that in finging the voice flides eafily from one note to another, which is juft an octave higher or lower. But were it required to pafs immediately from the note F to the note d , for example, an ordinary finger might eafily fall into a miftake, unlefs affifted by an inftrument. Having fixed the note F, it is almoft impofible all at once to make the tranfition to the note d . What then is the reafon of
this difference, that it is fo eafy to make note f harmonize with note F , and fo difficult to make note d accord with it? The reafon is evident from the remarks already made : it is this, that note F and note f make an octave, and that the number of vibrations of note f is precifely double that of note F. In order to have the perception of this accord, you have only to confider the proportion of one to two, which, as it inftantly ftrikes the eye by the reprefentation of the dots I formerly employed, affects the ear in a fimilar manner. You will eafily comprehend, then, that the more fimple any proportion is, or expreffed by fmall numbers, the more diftincly it prefents itfelf to the underftanding, and conveys to it a fentiment of fatisfaction.* Architects likewife carefully attend to this maxim, as they uniformly employ in their works proportions as fimple as circumftances permit. They ufually make the height of doors and windows double the breadth, and endeavour to employ throughout proportions capable of being expreffed by finall numbers, becaufe this is obvious and grateful to the underfanding. The fame thing holds good in mufic: accords are pleafing only in fo far as the mind perceives the relation fubfifting between the founds', and this relation is fo much more

[^5]eafily perceptible, as it is expreffed by fmall numbers. Now, next to the relation of equality, which denotes two founds in unifon, the ratio of two to one is undoubtedly the moft fimple, and it is this which furnifhes the accord of an octave : hence it is evident, that this accord poffeffes many advantages above every other confonance. Having thus explained the accord, or interval of two notes denominated by muficians an octave, let us confider feveral notes, as F , $f, \vec{f} ; \overrightarrow{\mathrm{f}}, \overrightarrow{\bar{f}}$, each of which is an octave higher than the one immediately preceding : fince then the interval of F from f, of $£$ from \bar{f}, of $\overrightarrow{\hat{f}}$ from $\overline{\bar{f}}$, of $\overline{\bar{f}}$ from $\overline{\bar{f}}$, is an octave, the interval of \bar{F} to \vec{F} will be a double octave, that of F to $\overline{\bar{i}}$, a triple octave, and that of F to $\overline{\mathrm{F}}$, a quadruple octave. Now, while note F makes one vibration, note f makes two, note $\overrightarrow{\mathrm{F}}$ makes four; note $\overline{\bar{f}}$ makes eight, and note $\overline{\bar{f}}$ makes fixteen : hence we fee, that as an octave correfponds in the relation of 1 to 2 , a double octave muft be in the ratio of 1 to 4 , a triple in that of I to 8 , and a quadruple in that of 1 to 16 . And the ratio of 1 to 4 , not being fo fimple as that of 1 to 2 , for it does not fo readily ftrike the eye, a double octave is not fo eafily perceptible to the ear as a fingle ; a triple is ftill lefs perceptible, and a quadruple ftill much lefs fo. When, therefore, in tuning a harpfichord, you have fixed the note F, it is not fo eafy to attune the double octave \bar{f} as the fingle f; it is ftill more difficult to attune the triple octave $\overline{\bar{f}}$ and the quadruple $\overline{\bar{f}}$ without rifing through the intermediate octaves.

Thefe

Thefe accords are likewife comprehended in the term confonance; and as that of unifon is moft fimple, they may be arranged according to the following gradations:

> I. Degree, unifon, indicated by the relation of 1 to 1 .
> II. Degree, the immediate octave, in the ratio of 1 to 2 .
> III. Degree, the double octave, in that of 1 to 4 .
> IV. Deggree, the triple octave, in that of 1 to 8 .
> V. Degree, the quadruple octave, in that of i to 16 .
> VI. Degree, the quintuple octave, in that of i to 32 .

And fo on, as long as found is perceptible. Such are the accords denominated confonances, to the knowledge of which we have been thus far conducted; but hitherto we know nothing of the other fpecies of confonance, and ftill lefs of the diffonances employed in mufic. Before I proceed to the explication of thefe, I muft add one remark refpecting the name octave, given to the interval of two notes, the one of which contains twice the vibrations contained in the other. You fee the reafon of it in the principal ftops of the harpfichord, which rife by feven degrees before you arrive at the octave $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, $\mathrm{G}, \mathrm{A}, \mathrm{B}, \mathrm{c}$, fo that ftop c is the eighth, reckoning C the firft. And this divifion depends on a certain feries of mufical intervals, the nature of which thall be unfolded in the following letters.
$3 d M_{a y,} 1760$.

LETTER VI.

Of other Confonances.

IT may be affirmed, that the relations of one to $2 t$ of I to 4 , of 1 to 8 , of I to 16 , which we have hitherto confidered, and which contain the progreffion of octaves, are all formed by the number 2 only; fince 4 is 2 times $2 ; 8,2$ times four ; 16 , two times 8 . Were we to admit, therefore, the number 2 alone into mufic, we fhould arrive at the knowledge of only the accords or confonances which muficians call the fingle, double, or triple octave; and as the number 2 , by its reduplication, furnifhes only the numbers $4,8,16,32,64$, the one being always double the preceding, all other numbers would remain unknown. Now, did an inftrument contain octaves only, as the notes marked $\mathrm{C}, \mathrm{c}, \overline{\mathrm{c}}, \mathrm{c}, \overline{\bar{c}}$, and were all others excluded, it could not produce an agreeable mufic, on account of its too great fimplicity. Let us introduce, then, together with number 2 , the number 3 likewife, and obferve what accords or confonances would be the refult. The ratio of 1 to 3 prefents at once two founds, the one of which makes 3 times more vibrations than the other in the fame time. This ratio is undoubtedly the moft eafily to be comprehended, next to that of 1 to 2 ; it will, accordingly, furnifh very pleafing confonances, but of a nature totally different from that of octaves. Let us fuppofe, then, that in the proportion of 1
to 3 , number 1 correfponds to note C ; fince note c is expreffed by number 2 , number 3 gives a found higher than c , but at the fame time lower than note \bar{c}, which correfponds to number 4. Now, the note expreffed by 3 is that to which muficians affix the letter g , and they denominate the interval from c to g , a fft b , becaufe in the keys of a harpfichord that of g is the fifth from c, as c, d, e, f, g. If then number I produces the found C , number 2 will give c ; number 3 gives g , number 4 the note $\stackrel{-}{\mathrm{c}}$; and note \bar{g} being the octave of g, the number correfponding to it will be 2 times 3 , or 6 . Rifing fill an octave, the found $\overline{\bar{g}}$ will correfpond to a number twice greater, that is 12 . All the notes with which the two numbers 2 and 3 furnifh us, indicating note C by I , therefore are,

$$
\begin{aligned}
& \text { C, c, g, } \overline{\mathrm{e}}, \overrightarrow{\mathrm{~g}}, \overline{\mathrm{c}}, \overline{\mathrm{~g}}, \stackrel{\overline{\mathrm{c}}}{ } \\
& \text { 1. 2. 3. 4. 6. 8. 12. 16. }
\end{aligned}
$$

Hence it is clear, that the ratio of 1 to 3 expreffes an interval, compounded of an octave and a fifth, and that this interval, on account of the fimplicity of the numbers which reprefent it, muft be, next to the octave, the moft grateful to the ear. Muficians accordingly affign the fecond rank among confonances to the fifth; and the ear catches it fo eafily, that there is no difficulty in tuning a fifth. For this reafon, in violins, the four ftrings rife by fifths, the Toweft being s , the fecond $\bar{\pi}$, the third $\overline{\mathrm{a}}$, and the fourth $\overline{\bar{e}} ; *$ and every mufician puts them in tune
*That is, in the language of fol-faing, fol, re, la, mil.
by the ear only. A fifth, however, is not fo eafily tuned as an octave; but the fifth above the octave, as from C to g , being expreffed by the proportion of I to 3 , is more perceptible than a fimple fifth, as, from C to G , or from c to g , which is expreffed by the proportion of 2 to 3 : and it is likewife known by experience, that having fixed the note C , it is eafier to attune to it the higher fifth g, than the fimple G. If unity had marked the note F, number 3 would mark the note \bar{c}, fo that,
$\mathrm{F}, \mathrm{f}, \overrightarrow{\mathrm{c}}, \overline{\mathrm{f}}, \overline{\bar{c}}, \overline{\mathrm{f}}, \overline{\overline{\mathrm{c}}}$, would be marked by

1. 2. 3.4.6.8. i2. where, from f to c the interval is a fifth in the relation of 2 to 3 ; from \bar{f} to $\overline{\bar{c}}$, from $\overline{\bar{i}}$ to $\overline{\bar{c}}$ are alfo fifths, as the ratio of 4 to 6 , and of 8 to 12 , is the fame as that of 2 to 3 . For if two frings perform, in the fame time, the one 4 vibrations, the other 6 , the former ftring will make, in a time equal to half the firft fpace of time, two vibrations, and the fecond, in the fame time, will make three. Now the founds emitted from thefe ftrings are the fame in both cafes; of confequence the relation of 4 to 6 expreffes the fame interval as that of 2 to 3 , that is, a fifth. Hence we have arrived at the knowledge of another interval contained in the ratio of 3 to 4 , which is that of \bar{e} to $\overline{\mathrm{f}}$, and confequently alfo of c to f, or of C to F. Muficians call it a fourth ; and being exprefled by greater numbers, it is not fo. agreeable, by a great deal, as the fifth, and fill lefs fo than the octave. Number 3 having furnifhed us new accords or confonances, namely the fifth and the fourths,
fourth, before we call in any others, let us take it again three times, in order to have the number 9 , which will give a higher note than note 3^{*}, or \bar{c} one octave and one fifth. Now, $\overline{\bar{c}}$ is the octave of $\overrightarrow{\mathrm{c}}$, and $\overline{\bar{y}}$ the fifth of $\overline{\bar{c}}$; number 9 then gives the note $\overline{\bar{g}}$, fo that $\overline{\bar{c}}, \overline{\mathrm{f}}, \overline{\overline{\mathrm{g}}}, \overline{\mathrm{c}}$, will be marked by
6.8.9.12; and if thefe notes be taken in the lower octaves, the relations remaining the fame, we fhall have:

$$
\begin{aligned}
& \text { C, F, G; c, f, g; } \bar{c}, \bar{f}, g ; \bar{c}, \overline{\bar{f}}, \overline{\mathrm{~g}} ; \overline{\bar{c}} . \\
& \text { 6. 8. } 9 \text {; 12. 16. 18; 24.32.36; 48.64.72.96. }
\end{aligned}
$$

which leads us to the knowledge of new intervals.
The firt is that of F to G , contained in the ratio of 8 to 9 , which muficians call a fecond or tone. The fecond is that of G to f, contained in the ratio of 9 to 16 ; called a Seventh, and which is one fecond, or one tone lefs than an octave. Thefe proportions, being already expreffed by very great numbers, are not reckoned among the confonances, and muficians call them difonances or difcords.

Again, if we take three times the number 9 , or ${ }^{27}$, it will mark a tone higher than \bar{c}, and precifely a fifth higher than g ; it will te accordingly the tone $\overline{\mathrm{d}}$, and it's octave $\overline{\bar{d}}$ will correfpond to twice the number 27 , or 54 , and it's double octave $\overline{\bar{d}}$ to twice the

[^6]number, 54 , or 108 . Let us reprefent thefe tones fome octaves lower, in the manner following:
C, D, F, G; c, d, f, g, $\bar{c}, \quad \overline{\mathrm{~d}}, \quad \overline{\mathrm{f}}$, $24,27,3^{2}, 3^{6} ; 48,54,64,72 ; 96,108,128$, $\overline{\mathrm{g}} ; \quad \overline{\mathrm{c}}, \quad \overline{\overline{\mathrm{d}}}, \quad \overline{\overline{\mathrm{f}}}, \quad \overline{\mathrm{g}} ; \quad \overline{\bar{c}}$.
144; 192, 216, 256, 288; 384.
Hence we fee, that the interval from D to F is contained in the ratio of 27 to 32 , and that of F to d in the ratio of 32 to 54 , the two terms of which are divifible by 2 ; and then in place of this relation we have that of 16 to 27 . The firft interval is called a tierce minor, or leffer third, and the other a greater fixth. The number 27 might be fill farther multiplied by 3 , but mufic extends not fo far, and we limit ourfelves to number 27 , refulting from 3 , mul tiplied three times by itfelf: other mufical tones fill wanting are introduced by means of number 5 , and fhall be unfolded in my next Letter. ${ }_{3} \mathrm{~d} M a y, 176 \mathrm{o}$.

LETTER VII.

Of the twelve Tones of the Harpfichord.

THE prefent fubject of my correfpondence with your Highnefs is fo dry, that I begin to appre, hend it may be growing tirefome. That I may not wafte too much time on it, and be relieved from the neceffity of recurring frequently to a topic fo difgufting,
gufting, I fend you by this conveyance three letters at once. My intention, in undertaking it, was to render vifible the real origin of mufical notes, with which muficians themfelves are almoft totally unacquainted. It is not to theory they are indebted for the knowledge of all thefe founds; but rather to the fecret power of genuine harmony, operating fo eflicacioufly on their ears, that they have been conftrained, if I may be allowed to fay it, to receive tones actually in ufe, though they are not hitherto perfectly agreed refpecting their juft determination. The principles of harmony are ultimately reducible to numbers,* as I have demonftrated; and it has been remarked, that the number 2 furnifhes octaves only, fo that having fixed, for example, the note F , we are conducted to the notes $f, \vec{f}, \overline{\mathrm{f}}, \overline{\bar{f}}$. The number 3 afterwards furnifhes $C, c, \bar{c}, \bar{c}, \overline{\bar{B}}$, which differ one fifth from the preceding feries; and the repetition of this fame number 3 , furnifhes again the fifths of the firft, namely $\mathrm{G}, \mathrm{g}, \overline{\mathrm{g}}, \overline{\overline{\mathrm{g}}}, \overline{\mathrm{g}}$: and finally, the third repetition of this number 3 adds farther the notes D, , $\bar{d}, \overline{\bar{d}}, \overline{\bar{d}}$. The principles of harmony then being attached to fimplicity, feem to forbid our pufhing farther the

[^7]repetition of number 3 ; hitherto, accordingly, we have only the following notes for each octave:
I. G. c. d. f.
16. 18. $24.27 \cdot 32$. which certainly would not furnifh a very copious mufic. But let us introduce, in addition to thefe, number 5 , and obferve the tone which fhall emit five vibrations while F emits only one. Now, \mathfrak{f} makes two vibrations in the fame time ; $\overline{\mathrm{r}}$ makes four ; and $\overline{\bar{c}}$ fix. The note in queftion then, is between $\overline{\mathrm{f}}$ and $\overline{\mathrm{c}}$. It is that which muficians indicate by letter \bar{a}, the accord of which, with note $\overline{\mathrm{f}}$, is denominated a greater third, and is found to produce a very agreeable concord, being expreffed by the very fimple ratio of 4 to 5 . Farther, note a with note $\overline{\mathrm{c}}$ produces an accord contained in the ratio of 5 to 6 , which is almoft as agreeable as the former, and which is denominated a leffer third, reprefented by the ratio of 27 to 32 , and it's difference from the firft is almoft imperceptible to the ear. This fame number 5 being applied to the other notes G, c, d, will give us, in like manner, their greater thirds, taken in the fecond octave below, that is to fay, the notes $\overline{\mathrm{b}}$, $\overline{\mathrm{e}}$, and $\overline{\bar{F}}$, which, being tranfpofed, will give the following notes, with their correfponding numbers.
F. Fs. G. A. B. c. d. e, f, 128. 135. 144. 160. 180. 192. 216. 240. 25 5.

Take away the notes Fs , and you will have the principal touches of the harpfichord, which, according 10 the ancients, conftitute the genus denominated diatonic, refulting from number 2 , from number 3 , thrice repeated, and from number 5. Admitting
thefe founds only, we are in a condition to compofi harmonies very agreeable and various, the beauty of which is founded on the fimplicity alone of the numbers correfponding to the notes. Finally, upon applying, a fecond time, the number 5 , we fhall be furnifhed with the thirds of the four new tones, A, E, B, Fs, which we have juft found, we fhall have the notes Cs Gs Ds and B, fo that now the octave is completed of the 12 tones received in mufic. All thefe tones derive their origin from the three numbers 2,3 , and 5 , multiplying 2 by itfelf, as often as the octaves require ; but we carry the multiplication of 3 only to the third ftage, and of five to the fecond. All the tones of the firft octave are contained in the following table, in which you will fee how the fundamental numbers 2,3 , and 5 , enter into the compofition of thofe which exprefs the relation of thefe notes.

ut or C	$2,2,2,2,2,2,2,3 \cdots 384$	
ut ${ }^{\text {区 }}$ C Cs	2, 2, 2, 2, 5, 5 400	16
D	$2,2,2,2,3,3,3 \ldots 432$	32
re区 Ds	$2,3,3,5,5 \cdots 45^{\circ}$	18
mi E	$2,2,2,2,2,3,5 \cdots . . .480$	30
fa F	2, 2, 2, 2, 2, 2, 2, 2, 2: 5^{12}	32
fa Fs	$2,2,3,3,3,5 \cdots 540$	28
fol G	2, 2, 2, 2, 2, 2, 3, $3 \cdots 576$	36
fol $\mathrm{x}_{\text {Gs }}$	$2,2,2,3,5,5 \ldots . . .600$	24
1 a A	2,2, 2, 2, 2, 2, 2, 5 . . 640	40
fi b. $\mathrm{B} b$	$3,3,3,5,5 \cdots . . .675$	35
fin B 7	$2,2,2,2,3,3,5 \cdots \cdots 720$	45
$\mu \mathrm{t}$	$2,2,2,2,2,2,2,3,3 \cdot \cdot 768$	43

While note C makes 384 vibrations, the tone Cs gives 400 , and the others as many as are marked by their correfponding numbers: note c will give then, in the fame time, double the number of vibrations marked by 384 , that is 768 . And for the following octaves, you have only to multiply thefe numbers by 2 , by 4 , or by 8 . Accordingly note \bar{c} will give twice 768 , or 1536 vibrations, note $\overline{\bar{c}}$ twice 1536 , or 3072 vibrations, and note ${ }_{c}^{\bar{c}}$ twice 3072 , or 6144 vibrations. In order to comprehend the formation of founds, by means of thefe numbers 2,3 , and 5 , it muft be remarked; that the points placed between the numbers in the preceding table fignify that they are multiplied into each other; thus, taking the tone Fs, for example, the expreffion $2,2,3,3,3,5$, fignifies 2 multiplied by 2 , that product by 3 , that again by 3 , that again by 3 , and that by 5 . Now 2 by 2 make 4 , that by 3 make 12 , that by 3 make 36 , that by 3 make 108, and that by 5 make 540 . Hence it is feen that the differences between thefe tones are not equal among themfelves; but that fome are greater, and others lefs. This is what real harmony requires. The inequality, however, not being confiderable, we commonly look on all thefe differences. as equal, denominating the interval from one note to another, femitone; and thus the octave is divided into 12 femitones. Many modern muficians make them equal, though this be contrary to the principles of harmony, becaufe no one fifth or third is perfectly exact, and the effect is the fame as if thefe tones were
not perfectly in tune.* They likewife admit, that we muft give up exactnefs of accord in order to obtain the advantage of equality of femitones, fo that the tranfpofition from any one tone whatever to another may in no refpect injure the melody. They acknowledge, however, that the fame piece played in the tone C , or a half tone higher, that is Cs , muft confiderably affect it's nature. It is evident, therefore, that in fact all femitones are not equal, whatever efforts may be made by muficians to render them fuch; becaufe true harmony refifts the execution of a defign contradictory to it's nature. Such, then, is the real origin of the mufical notes already in ufe; they are derived from the numbers 2,3 , and 5 . Were we farther to introduce number 7 , that of the tones of an octave would be increafed, and the art of mufic carried to a higher degree of perfection. But here the mathematician gives up the mufician to the direction of his ear.

$$
3^{d} M a y, 1 ; 60 .
$$

* The alteration thus forced upon the fifths, in order that every key of the harpfichord may ferve equally for the higher note flattened, and for the lower tharpened, and that, at the end of the fubdivifion, the octaves may be exact, is called temperament. It has been remarked that fifths may be a litile weakened without hurting the ear very much; whereas greater thirds become harih and difagreeable when they are ftrengthened. $-F . E$.

LETTER VIII.

Of the Pleafure derived from fine Mufic.

IT is a queftion as important as curious, Whence is it that a fine piece of mufic excites a fentiment of pleafure? The learned differ on this fubject. Some pretend that it is mere caprice, and that the pleafure produced by mufic is not founded on reafon, becaufe what is grateful to one is difgufting to another. This, far from deciding the queftion, renders it only more complicated. The very point to be determined is, How comes it, that the fame piece of mufic produces effects fo different, feeing, all admit that nothing happens without reafon? Others maintain that the pleafure derived from fine mufic confifts in the perception of the order which pervades it. This opinion appears at firft fight fufficiently well founded, and merits a more attentive examination. Mufic prefents objects of two kinds, in which order is effential. The one relates to the difference of the fharp or flat tones; and you will recollect, that it confifts in the number of vibrations performed by each note in the fame time. This difference, which is perceptible between the quicknefs of the vibrations of all founds, is what is properly called harmony. The effect of a piece of mufic, of which we feel the relations of the vibrations of all the notes that compofe it, is the production of harmony. Thus two notes which differ an octave, excite a perception of the re-
lation of 1 to 2 ; a fifth, of that of 2 to 3 ; and a greater third, of that of 4 to 5 . We comprehend then the order which is found in harmony, when we know all the relations which pervade the notes of which it is compofed, and it is the perception of the ear which leads to this knowledge. This perceptiori more or lefs delicate, determines why the fame harmony is felt by one, and not at all by another, efpecially when the relations of the notes are expreffed by fomewhat greater numbers. Mufic contains, befide harmony, another object equally fufceptible of order, namely the meafure, by which we affign to every note a certain duration : and the perception of the meafure confifts in the knowledge of this duration, and of the relations which refult from it. The drum and tymbal furnifh the example of a mufic in which meafure alone takes place, as all the notes are equal among themfelves, and then there is no harmony. There is likewife a mufic confifing wholly in harmony, to the exclufion of meafure. This mufic is the choral, in which all the notes are of the fame duration; but perfect mufic unites harmony and meafure. Thus the connoiffeur who hears a picce of mufic, and who comprehends, by the acute perception of his ear, all the proportions on which both the harmony and the meafure are founded, has certainly the moft perfect knowledge poffible of that mufic; while another, who perceives thefe proportions only in part, or not at all, underfands nothing of the matter, or poffeffes at moft a very flender knowledge of it. But the fentiment of pleafure ex-
cited by fine mufic muft not be confounded with the knowledge of which I have been fpeaking, though it may be confidently affirmed, that a piece of mufic cannot produce any, unlefs the relations of it are perceived. For this knowledge alone is not fufficient 10 excite the fentiment of pleafure ; fomething more is wanting, which no one hitherto has unfolded. In order to be convinced that the perception alone of all the proportions of a piece of mufic is infufficient to produce pleafure, you have only to confider mufic of a very fimple conftruction, fuch as goes in octaves alone, in which the perception of proportions is undoubtedly the eafieft. Such mufic would be far from conveying pleafure, though you might have the moft perfect knowledge of it. It will be faid then that pleafure requires a knowiedge not quite fo eafily attained, a knowledge that occafions fome trouble; which muft, if I may ufe the expreffion, coft us fomething. But, in my opinion, neither is this a fatisfactory folution. A diffonance, the relations of which are expreffed by the higheft numbers, is caught with more difficulty; a feries of diffonances, however, following without choice, and without defign, cannot pleafe. The compofer muft therefore have purfued in his work, a certain plan, executed in real and perceptible proportions. Then a connoiffeur on hearing fuch a piece, and comprehending, befide the proportions, the very plan and defign which the compofer had in view, will feel that fatisfaction which conftitutes the pleafure procured by exquifite mufic to an ear accuftomed to relifh the beauties and deli-
cacies of that enchanting art. It arifes, then, from divining in fome meafure the views and feelings of the compofer, whofe execution, when fortunate, fills the foul with an agreeable fenfation. It is a fatisfaction fomewhat fimilar to that which is derived from the fight of a well acted pantomime, in which you may conjecture, by the gefture and action, the fentiments and dialogue intended to be expreffed, and which prefents befides a well digefted plan. The enigma of the chimney-fweeper,* which was fo diverting to your Highnefs, furnifhes me with another excellent comparifon. When you can guefs the fenfe, and difcover that it is perfectly expreffed in the propofition of the enigma, you feel a very fenfible pleafure on making the difcovery; but infipid and incongruous enigmas produce none. Such are, if I may be permitted to judge, the true principles on which decifions refpecting the excellency of mufical compofitions are founded.

6th May, 1760.

L E T T E R IX.

Comprefion of the Air.

THE explanation of found, which I have had the honour to prefent to your Highnefs, leads me forward to a more particular confideration of air, which, being fufceptible of a movement of vibration,

* A celebrated enigma of La Mothe, publifhed in his fugitive pieces.

Vol. I.
fuch as that by which mufical ftrings, bells, and other fonorous bodies are agitated, tranfmits the concuffion to our ears. It will be immediately afked, What is air? For it does not appear, at firf fight, to be a material fubftance. As we perceive no fenfible body in it, furrounding fpace feems to contain no matter whatever. We feel nothing; we can walk, and move every limb in it, without meeting the flighteft obftacle. But you have only to move your hand brifkly, to be fenfible of fome refiftance, and even to perceive a ftream of wind excited by that rapid movement. Now the wind is nothing elfe but air put in motion ; and feeing it is capable of producing effects fo furprifing, how is it poffible to doubt that air is a material fubftance, and confequently a body ?* For the terms body and matter are fynonymous.

Body is divided into two great claffes, folid and fluid. The air, it is evident, muft be referred to the clafs of fluids. It has feveral properties in common with water; but it is much more fubtile and fine. Experiments have afcertained that air is about 800 times more fubtile and more rarefied than water;

[^8]and that if air were to be rendered 800 times denfer than it is, it would have the fame confiftency as the other fluid. A principal property of air, by which it is diftinguifhed from other fluids, is it's quality of being compreffed, or reduced into a fmaller fpace. This is demonftrated by the following experiment. Take a tube of metal or glafs A B C D (plate I. fig. 2.) clofe fhut at the end AB, and open at the other, into which is introduced a pifton, filling exactly the cavity of the tube. On puflhing the pifton inwards, when it has arrived at the middle E , the air which occupied at firft the cavity A B C D will be reduced one half, and confequently will have become twice as denfe. If the pifton is pufhed ftill farther in, as far as F, half way between B and E, the air will be reduced to a fpace four times fmaller than at firft; and if you continue to drive forward the piton to G, fo that B G thall be the half of B F, or the eighth part of the whole length $B D$, the fame air which in the beginning was expanded over the whole cavity of the tube, will be contracted to a fpace eight times fmaller. Going on in the fame manner to contract it into a fpace 800 times fmaller, you will obtain an air 800 times denfer than ordinary air. It would then be as denfe as water, which it would be eafy to prove by other experiments. Hence it appears, that air is a fluid fubftance, capable of compreffion, or, in other words, of being reduced to a fmaller fpace, and in this refpect it differs entirely from water. For, let the tube A B C D be filled with this laft fluid, and attempt to introduce the pifton, you will find it im-
poffible to drive it forward. Employ what force you may, you will gain nothing; the tube will burft fooner than you can reduce the water to a fpace fenfibly fmaller. This then is the effential difference between air and water: the latter is fufceptible of no compreffion, but air may be compreffed to any degree you pleafe. The more the air is compreffed, the denfer it becomes; thus the air which occupied a certain fpace, when compreffed or reduced to half that fpace, becomes twice as denfe; if reduced to a fpace 10 times fmaller, it is rendered 10 times more denfe ; and fo on. I have already remarked, that could it be rendered 800 times more denfe, it would then be as denfe as water, and confequently as heavy, for weight increafes in the fame proportion as denfity. Gold, the heavieft fubftance with which we are acquainted, is likewife the moft denfe. It is found by experiment to be 19 times heavier than water; and that a mafs of gold, in form of a cube of one foot, would weigh ig times a mafs of water of the fame dimenfions. Now fuch a mafs of water weighs 70 pounds; the mais of gold therefore would weigh 19 times 70 , that is 1330 pounds. It follows that were it poffible to comprefs air till it were reduced to a face 19 times 800 , that is, 15,200 times fimaller, it would become as denfe and as weighty as gold.

But it is very far from being poffible to carry the compreffion of air to that degrec. You may at firft without difficulty drive forward the pifton, but the farther you advance, the refiftance becomes more
powerful; and, before you are able to reduce the air to a fpace 10 times fimaller, fuch a force muft be employed as would burft the tube, unlefs it were of uncommon ftrength. And not only would fuch a force be neceffary to drive the pifon farther, but an equal force would be requifite to keep it in that ftate, for on the flighteft relaxation of the power, the compreffed air would drive it backward. The more compreffed the air is, the more violent are it's efforts to expand, and to recover it's natural ftate. This is what we call the fpring or elafticity of the air, of which I propofe to treat in my next letter.
> soth May, r 760 .

LETTER X.

Rurefaction and Elafticity of the Air.

IHAVE remarked, that air is a fluid, about 800 times more fubtile than water; fo that could water, without being reduced to vapour, be expanded over a fpace fo many times greater, and could become of confequence fo many times more fubtile, it would be of a fimilar confiftence with the air which we breathe. But air has a property which water has not, that of fuffering compreffion into a fmaller fpace, and of being proportionably condenfed, as I demonftrated in the preceding letter. And we difcover in air another property no lefs remarkable: it is capable of being expanded over a greater fpace, and thus
rendered fill more fubtile. This operation is called the rarefaction of air.

You have only to take, as before, a tube A B C D, (plate I. fig. 3.) at the bottom of which A C, let there be a fmall aperture O , fo that, on introducing the pifton as far as to F , the air may eifape by that aperture without being condenfed. The air which now occupies the cavity A C E F, will then be in it's natural ftate ; let the aperture O be clofely ftopped. On drawing back the pifton, the air will gradually expand through the greater fpace, fo that when the pifton is brought back to the point G, the fpace C G being double the fpace C F , the fame air which was contained in the fpace A C E F, will fill a fpace twice as great; it will be of courfe only half as denfe, or, which is the fame thing, twice as rare. If you draw back the pifton to the point H , the fpace C H being four times as great as the fpace $C F$, the air will become four times as rare as it was at firft, as it is then expanded over a fpace four times as great. And could the pifton be drawn back till the fpace became 1000 times as great, the air would fill equally expand through that fpace, and confequently become 1000 times as rare. Here then, likewife, air differs effentially from water : for if the cavity A C E F were filled with water, to no purpofe would you draw back the pifton; the water would continue to occupy the fame fpace as at firft; and the reft would remain empty. Hence we fee that the air poffefles an intrinfic power of expanding itfelf more and more, which it exerts not only when it is condenfed,
but alfo when rarefied. In whatever ftate of condenfation or rarefaction the air may be, it makes unremitting efforts to extend itfelf over a larger fpace, and is continually expanding fo long as it meets no obftacle. This property is called the elafticity of air ; and it has been demonftrated by experiments which I fhall prefently defcribe, that this elaftic power is in proportion to the denfity; in other words, the more the air is condenfed the greater are it's efforts to expand itfelf; and the more rarefied it is, the feebler are thofe efforts. It will be demanded, perhaps, why the air now in my chamber does not make it's efcape by the door, being endowed with an expanfibility continually impelling it to occupy a greater fpace? The anfwer is obvious. This would infallibly happen, did not the external air make equal efforts to extend itfelf; but the efforts of the air of the chamber to get out, and that of the external air to prefs in, being equal, they balance each other, and remain in a ftate of reft. Had the external air accidentally acquired a greater degree of denfity, that is, more elafticity, it would in part force it's way into the chamber, where the air being compreffed, would likewife acquire a greater degree of elafticity; this current would accordingly laft till the elafticity of the internal became equal to that of the external air: And fhould the air of the chamber fuddenly become more denfe, and it's elafticity greater than that of the external air, it would force it's way out, and it's deniity gradually diminifhing, it's elafticity too would diminifh, till it became equal to the external air;
the current would then ceafe, and the air in the chamber would be in equilibrium with the external. Free air, then, is in a ftate of reft only when it has the fame degree of elafticity with that which furrounds it; and as foon as that of the one tract becomes more or lefs elaftic than the adjoining, the equilibrium can no longer fubfift; but if the elafticity is greater, the air will expand itfelf and flide into fpaces where it is finaller: and from this motion of the air refults the wind.* Hence it comes to pafs that the elafticity of the air is fometimes greater, fometimes lefs in the fame place; and this variation is indicated by the barometer, the defcription of which merits a particular confideration. I confine myfelf, at prefent, to thefe qualities of air, it's condenfation and rarefaction, intreating you to recollect, that the more condenfed it is, the greater power of expanfion or elafticity it acquires; and that on the contrary, the more it is rarefied, the more this quality is diminifhed. Experimental philofophers have invented one machine for rarefying of air, and another for condenfing it: the former is called the air-pump, the latter the condenfer. Thefe machines ferve to perform many curious experiments, with which you are already well acquainted. I referve to myfelf, however, the liberty of recapitu-

[^9]lating fome of them, becaufe they are neceflary to elucidate and explain the nature and properties of air, which, as they powerfully contribute to the prefervation of animals, and the production of plants, prefs upon us the importance of forming a juft idea of them.
14 th May, 1760 .

L E T T E R XI.

Gravity of the Air.

IHAVE endeavoured to demonfrate, that the air is a fluid, endowed with the particular property of fuffering compreffion into a finaller fpace, and of expanding into a greater, when no obftacle interpofes. This property of air, known by the name of fpring, or elafticity, from it's refemblance to a fpring, which it requires an effort to unbend, and which refumes it's form as foon as the effort ceafes, is accompanied by another, in common to it with all bodies in general, namely, gravity or weight, in virtue of which all bodies tend toward the centre of the earth, and by which they are under the neceffity of falling down, unlefs fupported. The learned are very much divided, and very uncertain, refpecting the primary and mechanical caufe of this power, but it's exiftence is indubitable.* Daily experience evinces

[^10]it. We know even the quantity of it, and can mea. fure it exactly. For the weight of a body is nothing elfe but the power which conftrains it to defcend; and as the weight of every body may be exactly meafured, we know perfectly well the effect of gravity, though the caufe, or that invifible power which acts upon all bodies, forcing them to defcend, may be abfolutely unknown to us. It follows, that the more matter any body contains, the heavier it is. Gold and lead are heavier than wood or a feather, as they contain more matter in the fame bulk, or in the fame extent. But as air is a very fubtile and thin fubftance, and it's gravity of confequence very little, this property ufually efcapes our fenfes. Experiments, however, may be made, capable of producing full conviction that it poffeffes gravity. You have feen how the air may be rarefied in a veffel or a tube; and by means of the air-pump, this rarefaction may be carried fo far, as almof entirely to exhauft the air, and to leave the receiver fenfibly a vacuum. Or you may take a tube A B C D, (plate I. fig. 4.) into which you introduce the pifton, fo as perfectly to touch the bottom, and to leave no air between the two furfaces. To perform the experiment with more advantage, let there be at the bottom of the tain principles at which the prudent philofopher will choofe to ftop, left, by pufhing his refearches too far, he involve himfelf in greater obfcurity. 'Thofe who attempted to account for gravity by mechanical impulfe, committed an egregious overfight; for the queftion ftill recurs, What produces this impulfe? No metaphyfical work has ever done fo much fervice to philofophy as Mr. Hume's admirable effay on "Neceffary Connexion." F. E.
tube a little aperture G, through which the air may efcape, as the pifton is pufhed forward. Let the aperture then be clofely ftopped, that not a particle of air may be included between the pifton and the bottom of the tube. Having made this arrangement, draw back the pifton, and the external air not being able to force it's way into the tube, there will remain between the bottom of the tube and the pifton, a perfect vacuum, which may be increafed at pleafure, by continuing to draw back the pifton. You may thus exclude the air contained in a veffel; and fuch veffel, reduced to a vacuum, being tried in accurate fcales, will be found to weigh lefs than when filled with air. Hence we deduce this very important conclufion, That the air contained in an empty veffel increafes it's weight, and that the air itfelf poffefles gravity. Were the veffel large enough to contain 800 pounds weight of water, we might difcover by this experiment, that the body of air which fills it would weigh nearly one pound. Hence we conclude, that air is 800 times lighter than water. I muft be underftood as fpeaking of the common air which furrounds us, and which we breathe; for you know that with the affiftance of art, air may be compreffed by forcing it into a fmaller fpace, and it's gravity thereby increafed. Were the veffel which I have mentioned, to be filled with air compreffed to twice the confiftency of common air, it would weigh two pounds more than when empty. Were it filled with air 800 times more compreffed than common air, it would weigh 800 pounds more than when empty,
that is, as much as if it were filled with water. The air, then, poffeffing a certain degree of gravity, though in the natural ftate of this fluid it's gravity is extremely fmall, it muft, however, as well as all other bodies, tend toward the centre of the earth, and confequently preffes on every thing which oppofes this tendency. For this reafon the fuperior air preffes downward on the inferior, and this laft undergoes a compreffion from the weight of the whole mafs of air which is above it. Hence it comes to pafs, that in thefe regions, the air has a certain degree of compreffion or denfity, which is the effect of the gravity of the fuperior air ; and that if the fuperior air had more or lefs gravity, the air which furrounds us would likewife become more or lefs denfe. It is thus that the air below fupports the weight of the fuperior air, and that the more we afcend, the more it lofes it's denfity and rarefies ; fo that were it poffible to continue to afcend, the air would at length be totally loft, or would become fo fubtile and fo rarefied, as to be no longer perceptible. Were you to defcend, on the contrary, into a very deep pit, you would find the denfity of the air continually increafing, from the increafe of the mafs of air preffing downward upon it.
$$
17 \text { th May, } 1760 .
$$

LETTER XII.

Of the Atmopplere, and the Barometer.

HAVING demonftrated that air is a fluid, elaftic, ant poffefled of gravity, I proceed to remark, that the earth is furrounded on all fides by this fluid, and that the fpace which it fills is called the atmofphere. It would be abfolutely impoffible for a perfect vacuum to exift on any part of the earth's furface; for the air of the adjoining regions, compreffed by the weight of the fuperior air, and making inceffant efforts to dilate, would force itfelf into the empty face and fill it. The atmofphere, therefore, occupies the whole region which furrounds the earth; the inferior air is continually compreffed by the weight of the fuperior air, and that until the degree of elafticity which refults from this compreffion, is able to form an equilibrium to the comprefing power. Then, although this air is compreffed only in a downward direction, it produces, in virtue of it's elaiticity, efforts to expand itfelf not only downwards, but fideways alfo. For this reafon, the air in a chamber is as much compreffed as the external, which appeared a paradox to certain philofophers. For they reafoned thus: In a chamber, the inferior air is compreffed only by the fmall quantity of fuperior air included in that chamber, whereas the external air is compreffed by the weight of the whole atmofphere, the height of which is immenfe. But the
the difficulty is at once removed, by the property which air poffeffes, of expanding itfelf when compreffed in all directions. Now the air in the chamber is at firft reduced, by the external air, to the fame degree of compreffion and elafticity with itfelf; hence, whether I am in my chamber, or in the open air, I feel the fame compreffion; being always underftood, that I mean at the fame height, or at the fame diftance from the centre of the earth. For I have already remarked, that on getting to the fummit of a high tower, or of a lofty mountain, the compreffion of the air is lefs, becaufe the weight of the fuperior air is then diminifhed. Various phenomena confirm this ftate of the compreffion of the air.

Take, for inftance, (plate I. fig. 5.) a tube A B, clofe at the end A, and having filled it with water, or any other fluid, invert it, fo that the open end B may be undermoft, and you will find that the fluid does not run out. The elafticity of the air acting at B, in oppofition to the fluid, fupports it in the tube. But if you make an aperture into the tube at A, the fluid immediately defcends : the air which is admitted by the aperture acts then from above, by it's preffure upon the water, and forces it downward ; which demonftrates, that while the tube was clofe at top, it was the external air which fupported the water in it. And were fuch a tube to be placed in a receiver, from which the air was extracted by the air-pump, the fluid would inftantly defcend. The ancients, to whom this property of air was unknown, alleged, that nature fupported the water in the tube, from
the horror which it has of a vacuum. For, faid they, were the fluid to defcend, there muft be a vacuum at the upper end of the tube, as the air could find no admiffion into it. According to them, therefore, it was the horror of a vacuum which kept the fluid fufpended in the tube. It is now demonftrated, that it is the force of the air which fupports the weight of the fluid in the tube; and as this force has a determinate quantity, the effect cannot exceed a certain limit.

It is found by experiment, that if the tube A B is more than 33 feet in length, water will no longer remain fufpended in it, but will run out till it comes to the height of 33 feet; the fpace left a-top will, of courfe, be a real vacuum. The force of the air then cannot fupport water in the tube at more than the height of 33 feet; and as the fame force fupports the whole atmofphere, it is concluded, that a column of the atmofphere is of equal weight, the bafis being equal with a column of water 33 feet high. If, inftead of water, you were to ufe mercury, which is 14 times heavier, the force of the air could fupport it in the tube at the height of only 28 inches; and if you go beyond that, the mercury defcends, till it's height correfponds to the preffure of the atmofphere, leaving the fpace a-top in the tube a vacuum. Such a tube clofe above, and open below, being filled with mercury, forms the inftrument called the Barometer, by means of which it has been difcovered, that the atmofphere is not always of equal gravity. For it's real gravity is afcertained by the barometer, from the height
height of the mercury, which, as it rifes or falls, in dicates that the denfity of the air, or the preffure of the atmofphere, is increafing or diminifhing.
20th May, 1760.

LETTER XIII.

Of Wind-Guns, and the Compreflion of Air in Gun- :

> Powder.

HAVING explained that remarkable property of air which is denominated compreffibility, by means of which it is reducible into a fmaller fpace, we are enabled to give an account of feveral productions of both nature and art. I fhall begin with an explanation of the wind-gun, though I have no doubt but you are well acquainted with that inftrument. It's conftruction is fimilar to that of the common fufil; but inftead of powder, we employ condenfed air to difcharge the bullet.

In order to comprehend the procefs of this operation, it muft be obferved, that air can be compreffed only by a force proportional to the degree of condenfation which you wifh to obtain; in this fate, it ftrives to extend itfelf, and the efforts which it makes are precifely equal to the force neceffary to reduce it to the fize which it actually occupies. The more; then, that the air is condenfed, the more violent are it's efforts to dilate ; and if the air is raifed to a denfity twice as great as when it is free, which is the
cafe when we reduce it to half the fpace which it occupies in it's natural ftate, the force with which it endeavours to expand is equal to the prefliure of a column of water 33 feet high. Figure to yourfelf a great cafk of this height, filled with water; this fluid will, undoubtedly, make a ftrong preffure on the bottom of the veffel. If you make a hole in it near the bottom, the water will force itfelf out with confiderable violence: and on ftopping the aperture with your finger, you will be abundantly fenfible of this preffure of the water. The bottom of the cafk fuftains throughout a fimilar preffure. Now a veffel containing air twice as denfe as that of the atmofphere, muft undergo precifely fuch a preffure, and if it were not fufficiently ftrong to fuftain it, would burft. The fides, then, of this veffel muft be as ftrong as the bottom of the cafk I have mentioned. If in the fame veffel the air were three times as denfe as common air, the force with which it would act upon the fides muft be increafed in the proportion of one more, and would be the fame which is fuftained by the bottom of a cafk full of water, of 66 feet in height. You will eafily conceive that this force muft be very great, and that it muft go on increafing in the fame ratio, according to the different degrees of condenfation of the air. This being laid down, there is, at the bottom of the air-gun, a cavity ftrongly fortified on all fides, into which the air is more and more compreffed, in order to reduce it to as high a degree of denfity as the force employed for

> Vol. I.

E
that
that purpofe can adinit. The air confined in this cavity will thereby acquire a prodigious power to force itfelf out: and if an aperture is made, it will fly off with a velocity proportional to that power. Now there is fuch an aperture which terminates in the cavity of the tube into which the ball is put. It is clofely ftopped; but when you wifh to difcharge the piece, you open, for an inftant, the valve which fhuts it; and the air rufhing forth, forces out the ball with all the velocity which we remark in fhooting. Every time you difcharge, the valve is kept open only a fingle moment; a certain quantity of air, therefore, and no more, can efcape, and enough fill will remain for feveral fhot. But on difcharge, it's denfity and correfponding elafticity diminifh; and for this reafon, the latter difcharges are lefs forcible than the former, till the force is at length entirely exhaufted. Were the valve to remain open any confiderable time, more air would make it's efcape, which would all go to wafte; for this force acts upon the ball only while it is in the barrel of the gun; as foon as it is fhot off, it is ufelefs to leave a paffage for the air. Hence it appears, that were it poffible to carry the condenfation of this fluid a great deal farther, you will produce from the wind-gun the fame effects as from the guns and cannons in common ufe.

The effect of artillery is accordingly founded on the fame principle. Gunpowder is only a fubftance, which contains in it's pores an air extremely condenfed.
denfed.* Nature produces here the fame operations which we employ for compreffing the air, but carries the condenfation to a much higher degree. All that is neceflary is to open the little cavities in which this denfe air is confined, that it may have liberty to efcape. This is performed by means of fire, which

* Recent experiments have fomewhat corrected this explanation: Gunpowder, it is well known, is a compofition of fulphur, nitre and charcoal. In the detonation of this fubftance, the heat puts the fulphur and charcoal in a condition to diffolve the acid of the nitre, and to take from it the dephlogiftic air which enters into it's compofition. The atmofpheric mephites, which is another principle of this acid, finding itielf thereby difengaged, begins to expand, and forms a firft elaftic permanent fluid. The firing of the charcoal produces fixed air, which is a fecond elaftic permanent fluid. That of the fulphur produces the vitriolic acid, which is reduced to vapour by the heat of the inflammation (a). Finally, the water which enters into the compofition of the powder, is likewife converted into vapour. Here, then, are four elaftic fluids produced in the progrefs of this operation. To their expanfion the phenomenon of the explofion is to be afcribed. The two laft, brought back to a liquid fate by being cooled, form the fmoke we perceive after the difcharge. $-F$. E.
(a) This account of the aeriform fluids, extricated by the inflammation of yun-powder, feems very embarraffed. Sulphur is not an effential ingredient in gun-powder; but as it burns at a low heat, it renders the mafs more fufcep. tible of catching fire. The inflammation of gunpowder is precifely the fame phenomenon with the detonation of charcoal and nitre. That falt is compofed of vegetable alkali and nitrous acid, which confifts of pure and mephitic airs united in a certain proportion. By means of the heat at firf applied, and then rapidly evolved during the procefs of inflammation, the nitrous acid is decompofed; it's mephitic air is expelled, while it's pure air, combining with the charcoal, forms fixed air, which is alfo difcharged. It appears from experiment, that this aerial compound, at the inftant of it's extrication, has upwards of five hundred times the elafticity of common air.-E. E.
burfts open thefe little envelopes: the air then fuddenly flies off, with incredible velocity, and forces before it bullets and balls in a manner entirely fimilar to that which we have remarked in the cafe of the wind-gun, but with much greater impetuofity. Here, then, are two very furprifing effects produced from the condenfation of air, with this fingle difference, that in the one, it is the work of art; and in the other, that of nature. We fee therefore in this, as in every thing elfe, how infinitely the operations of human fkill are furpaffed by thofe of nature.

$$
24^{\text {th }} M_{a y}, ~=760 .
$$

LETTER XIV.

> The Effect produced by the Heat and Cold on all Bodies, and of the Pyrometer and Thermometer.

BESIDE the properties already mentioned, air has another very remarkable quality, in common to it with all bodies, not excepting fuch as are folid; I mean the change produced on it by heat and cold. It is obfervable, in general, that all bodies, being heated, dilate or increafe in fize. A bar of iron made very hot, is fomewhat longer and thicker than when it is cold. There is an inftrument called the Pyrometer, which accurately indicates the flighteft dif. ferences of length or fhortnefs, that a bar of iron undergoes, to which it is applied. You know that
in a watch, fome of the wheels move very flowly, though they communicate motion to others which revolve with confiderable rapidity. By a fimilar mechanifm it is poffible, from a change almoft imperceptible, to produce one very confiderable, as is the cafe of the pyrometer, which I have juft mentioned. It has an index, which runs over a very confiderable fpace, on the flighteft change produced in the length of the body on which the experiment is made. On applying this inftrument to a bar of iron, or any other metal, placed over a burning lamp, the index is immediately put in motion, and fhews that the bar is becoming longer; and, as the heat increafes, the bar likewife increafes in length. But on extinguifhing the lamp, and the bar growing cold again, the index moves in a contrary direction, and thereby fhews that the bar is growing fhorter. The difference, however, is fo flight, that, without the help of this inftrument, it would be difficult to perceive it. Yet this variation is abundantly perceptible in the motion of pendulum time-pieces. The ufe of the pendulum is to regulate the motion. If you lengthen it, the clock goes flower, and if you fhorten it, the clock goes fafter. Now it is remarked, that in very hot weather all clocks lofe time, and proportionably gain it in very cold weather; which clearly demonftrates, that the pendulum is lengthened or fhortened, according to the temperature of the air.

All bodies undergo this alteration, but the quantity differs greatly, according to the nature of the
fubftance of which they are compofed. In fluids, efpecially, this variability is very perceptible. To afcertain it, take a glafs tube, B C, (plate I. fig. 6) joined at the end B to a hollow ball A, and let it be filled with any liquor you pleafe up to M. On heating the ball A, the liquor will rife from M toward C : when it becomes cold again, the liquor will fall toward B. This clearly proves that the fame liquid occupies a greater fpace when it is heated, and a fmaller when cold. It is likewife clear, that this variation muft be more perceptible, when the ball is large, and the tube narrow. For, if the whole mafs of liquor increafes or diminifhes by a thoufandth part, that thoufandth part will occupy, in the tube, a fpace great in proportion to it's narrownefs. Such an inftrument then is exceedingly proper to indicate to us the different degrees of heat and cold; for if the liquor rifes or falls, it is a certain indication that the heat is increafing or diminifling. This inftrument is called the Thernometer, which points out the changes that take place in the temperature of the air, and of the bodies which furround us. It muft not be confounded with the barometcr, whofe ufe is to indicate the gravity of the air, or rather the force with which it is compreffed. This caution is the more neceflary, that the barometer and thermometer have a confderable refemblance: being both glafs tubes filled with mercury; but their conftruction, and the principles on which they are founded are entirely different. This quality of body, extenfion by
heat,
heat, and contraction by cold, belongs likewife, in a very fuperior degree, to air. I fhall explain it at greater length in my next letter.*
${ }_{27} 7^{\text {th }}$ May, 1760 .

LETTER XV.

Clanges produced in the Atmofphere by Heat and Cold.

HEAT and cold produce the fame effect on air, as on every other body. Air is rarefied by heat, and condenfed by cold. From what I have faid of the elafticity of air, you eafily perceive, that a certain quantity of this fluid is not determined to occupy only a certain fpace, as all other bodies are ; but by

* There are three kinds of thermometers in ufe at prefent, that of Reaumur is adopted in France, Switzerland, and Italy; that of Celfius in Sweden and Denmark. In both of thefe, the fcale commences at the freezing point; but the interval, between that and the boiling point, is divided, in the former, into 80 parts, and the latter, into 100. Farenheit's thermometer is ufed in Britain and Holland; the freezing point is marked on it 32 , and the boiling 212, the interval containing 180 degrees. The freezing point is very nearly permanent, but the boiling point depends on the preffure of the atmorphere, and near the furface of the earth it varies one degree and fix-tenths for every inch of variation in the height of the barometer. Water has been heated in a clofe veffel to fuch a degree, as to melt lead and tin; and in the receiver of an airpump, it may be converted into vapour, at the ordinary temperature of the irr. Hence the reafon why water boils fo quickly on the fummit of lofty mountains. The boiling point would be at 172° on the heights of the Andes.-E. E.
it's riature, it has a perpetual tendency to dilate, and actually does expand itfelf, as long as it meets no obftacle.

This property of air is denominated elafticity. When this fluid is confined in a veffel, it makes efforts in every direction to burft it; and thefe efforts are greater or lefs in proportion to it's condenfation. Hence we come to this conclufion, that the elafticity of air is in exact proportion to it's denfity ; fo that when it's denfity is doubled, it's elafticity is likewife doubled; and that, in general, a certain degree of elafticity correfponds to a proportional degree of denfity. It muft be remarked, however, that this takes place no longer than while the air preferves the fame degree of heat. Whenever it becomes hotter, it acquires greater power of expanfion than what correfponded to it's denfity ; and cold produces the oppofite effect, by diminifhing it's expanfive power. In order then to determine the elafticity of a mafs of air, it is not fufficient to know it's denfity ; you muft likewife know it's degree of heat. In order to fet this in a clear light. Let us fuppofe two chambers clofely fhut on all fides, but united by a door of communication; and that the heat in both is equal. In order to this the air in both chambers muft have the fame degree of denfity. For were the air more denfe, and confequently more elaftic; in the one than in the other, part of it would efcape from the one, and force it's way into the other, till the denfity in both were the fame, But let us fuppofe that one of the chambers has become hotter than the other, the air thereby
acquiring a greater elafticity, would of courfe force itfelf into the other, and reduce that which it found there into a fmaller fpace, till the elafticity in both chambers was brought to the fame degree. During this change there will be a current of air, through the door, from the chamber which is more, into that which is lefs heated; and when the equilibrium is reftored, the air will be more rarefied in the warm apartment, and more condenfed in the cold; and yet the elafticity of both will be the fame. From this it clearly follows, that two maffes of air of different denfity, may have the fame elafticity, when the one is hotter than the other; and this circumftance taken into, confideration, it may happen, that with the fame degree of denfity, they may be endowed with different degrees of elafticity.

What I have faid of two chambers may be applied to two countries; and hence it may be concluded, that when one country becomes warmer than the other, there muft of nèceffity be a current of air from the one to the other : and from this refults the wind.

Here, then, is one fruitful fource of winds, though there are perhaps others, which confift in the different degrees of heat, which prevail in different regions of the earth ; and it is demonftrable, that the whole air which furrounds the earth could not be in a fate of reft, unlefs that, univerfally, at equal heights, there were found the fame degree, not only of denfity, but likewife of heat. And fhould it happen that there were no wind over the whole furface of the earth, it might with certainty be concluded, that
the air would likewife be every where equally denfe and warm at equal heights. Now as this never happens, there muft of neceflity always be winds, at leaft in fome regions. But thefe winds are, for the moft part, to be met with only on the furface of the earth; and the higher you rife, the lefs violent winds are. Winds are hardly perceptible at the fummit of very high mountains ;* there perpetual tranquillity reigns; from which it is impoffible to doubt, that at confiderable elevations, the air is always in a ftate of reft, Hence it follows, that in regions remarkably clevated, there univerfally prevails all over the earth, the fame degree of denfity and heat; for were it hotter in one place than in another, the air could not be in a ftate of reft. And, as there is no wind in thefe elevated regions, it muft neceflarily follow, that the degree of heat there muft be univerfally and always the fame; which is a very furprizing paradox, confidering the great variations of heat and cold which we feel on the furface of the earth, during the courfe of a year, and even of one day; without taking into the account the difference of climate, that is, the intolerable heats felt under the equator, and the

[^11]dreadful cold which ever prevails toward the poles of the earth. Experience itfelf, however, confirms the truth of this aftonifhing fact. The fnow and ice remain equally, fummer and winter, on the mountains of Switzerland, and are equally unchangeable on the Cordeliers, lofty mountains of Peru, fituated under the very equator, and where there perpetually reigns, neverthelefs, a cold as exceffive as that of the polar regions. The height of thefe mountains is not a German mile,* or 24,000 feet. From this it may be, with confidence, concluded, that were it poffible for us to afcend to the height of 24,000 feet, above the earth, we Chould always and univerfally meet with the fame degree of cold, and that cold exceffively fevere. \dagger We fhould remark there no fenfible difference during either fummer or winter, under the equator, or near the poles. At this height, and ftill higher, the fate of the atmofphere is univerfally, and at all feafons, the fame; and the variations of heat and cold take place near the furface of the earth alone. It is only in thefe inferior regions, that the effect of the rays of the fun becomes perceptible. You have, undoubtedly, fome curiofity to know the reafon of this. It fhall be the fubject of the following letter.
$$
31 / t \text { May, } 1760 .
$$

* About $43-5$ ths miles, Englifh.
\dagger M. Charles, in his aërial voyage of the 1 ft Dec. $I_{7} 8_{3}$, felt this change of temperature in a very fenfible manner ; for then, on the furface of the earth, the fluid in the thermometer itood at 7° above the freezing point, and after about 10 minutes of afcenfion, it had fallen to 5° below it. $-F . E$.

LETTER

LETTER XVI.

The Cold, felt on bigh Mountains and at great Deptbs, accounted for.

IT appears very furprifing, that we fhould feel the fame degree of cold in all regions, after we have rifen to a certain height, fay 24,000 feet ; confidering that the variations with refpect to heat, on the earth, not only in different climates, but in the fame country, at different feafons of the year, are fo perceptible. This variety, which takes place at the furface of the globe, is undoultedly occafioned by the fun. It appears, at firft fight, that his influence muft be the fame above and below, efpecially when we reflect, that a height of 24,000 feet, or a mile, though very great with refpect to us, and even far beyond the height of the loftieft mountains, is a mere nothing, compared to the diftance of the fun, which is about thirty millions of miles.* This is, therefore, a very important difficulty, which we muft endeavour to folve. For this purpofe I begin with remarking, that the rays of the fun do not communicate heat to any bodies, but fuch as do not grant them a free paffage. You know that bodies, through which we can difcern objects, are denominated tranfparent, pellucid, and diaphonous. Thefe bodies are glafs, cryftal,

[^12]diamond, water, and feveral other liquids, though fome are more or lefs tranfparent than others. One of thefe tranfparent bodies being expofed to the fun, is not heated to fuch a degree as a body not tranfparent, as wood, iron, \&c. Bodies not tranfparent are denominated opaque. A burning-glafs, for example, by tranfmitting the rays of the fun, fets on fire opaque bodies, while the glafs itfelf is not fenfibly heated. Water expofed to the fun becomes fomewhat warm, only becaufe it is not perfectly tranfparent; when we fee it confiderably heated by the fun at the brink of rivers, it is becaufe the bottom, being an opaque body, is heated by the rays which the water tranfmits. Now, every heated body communicates that heat to all adjoining bodies; the water accordingly derives heat from the bottom. If the water be very deep, fo that the rays cannot penetrate to the bottom, it has no perceptible heat, though the fun bears upon it.

As air is a very tranfparent body to a much higher degree than glafs or water, it follows that it cannot be heated by the fun, becaufe the rays are freely tranfmitted through it. The heat which we frequently feel in the air is communicated to it by opaque bodies, which the rays of the fun have heated ; and were it poffible to annihilate all thefe bodies, the air would farcely undergo any change in it's temperature by the rays of the fun : expofed to it or not it would be equally cold. But the atmofphere is not perfectly tranfparent : it is even fometimes fo loaded with vapours, that it lofes almoft entirely it's
tranfparency,
tranfparency, and prefents only a thick fog. When the air is in this fate, the rays of the fun have a more powerful influence upon it, and heat it immediately.

But thefe vapours rife to no great height; at the height of 24,000 feet, and beyond, the air is fo fubtile and fo pure, that it is perfectly tranfparent; and for this reafon the rays of the fun cannot immediately produce any effect upon it. This air is likewife too remote from terreftrial bodies to receive a communication of heat from them; they act only upon fuch as are adjacent. Hence you will eafily perceive that the rays of the fun cannot produce any effect in regions of the air very much elevated above the furface of the earth; and that the fame degree of cold muft always and univerfally prevail in fuch regions, as the fun has no influence there, and as the heat of terreftrial bodies cannot be communicated fo far. This is nearly the cafe on the fummit of very high mountains, where it is always much colder than on plains and in vallies.*

[^13]The city of Quito, in Peru, is almoft under the equator, and were we to form our judgment from it's fituation on the globe, we would fuppofe it opprefled with intolerable heat ; the air, however, is abundantly temperate, and differs very little from that of Paris. Quito is fituated at a great height above the real furface of the earth. In going to it from the fea fhore you have to afcend for feveral days; it is accordingly built in an elevation equal to that of our higheft mountains, though furrounded by others ftill much higher, called the Cordeliers. This laft circumftance would afford a reafon for thinking that the air there muft be as hot as at the furface of the earth, as it is contiguous on all fides to opaque bodies, on which the rays of the fun fall. The objection is folid; and no folution can be given but this. That the air at Quito, being very elevated, muft be much more fubtile, and of lefs gravity than with us; and the barometer, which always ftands confiderably lower, inconteftably proves it.

Air of fuch a quality is not fo fufceptible of heat as common air, as it muft contain lefs vapour and other particles which ufually float in the atmofphere; and we know by experience that air very much loaded is proportionably fufceptible of heat. I muft here fubjoin another phenomenon no lefs furprifing: In very deep pits, and lower fill, if it were ftill poffible to defcend, the fame degree of heat always and univerfally prevails, and nearly for the fame reafon. As the rays of the fun exert their infuence only on the furface of the earth, and as the heat which they
there excite communicates itfelf up and down, this effect at very great depths is almoft imperceptible. The fame thing holds refpecting confiderable heights. This elucidation will, I flatter myfelf, prove fatisfactory.*

3d ${ }^{\text {funne, }} 1760$.

LETTER

- The reafon which Profeffor Euler affigns for the cold that prevails in the higher regions of the atmofphere feems plaufible, but will not ftand an accurate examination. Light is much impaired in it's paffage through the atmofphere, and the heat communicated is in every cafe proportional to the quantity of abforption. It appears, from fome ingenious experiments of M. Bouguer, that we receive only four-fifths of the rays of a vertical fun; and when that luminary approaches the horizon, the portion of his light which reaches the furface of the earth, is much fmaller. Thus at an elevation of 20 degrees it is one half; at that of 10 degrees one third; and at that of five degrees one-eighth. He:lce the fun-beams are moft powerful on the fummits of lofty mountains, for they fuffer the greateft diminution in paffing through the denfe air of the lower regions. If the air derived it's heat from the furface of the earth, thofe countries would be warmeft which enjoyed the greateft quantity of fun-fhine. The Britifh iflands are fhrouded in clouds nine months of the year; yet our climate is milder than that of the fame parallel on the Continent, where the fky is generally ferene. The elevated town of Quito, expofed to a brilliant fun, enjoys a temperate air; while the Pe ruvian plains, fhaded with fleecy clouds, are parched with heat. Were the reafoning in the text to be admitted, we fhculd conclude that the tops of mountains are warmer than their bafes. To fay that air, much rarefied, is not fufceptible of heat, is a very extraordinary affertion, fince we are acquainted with no fubftance whatever that may not be heated. Befides, a more intenfe cold may be artificially produced than what prevails in the lofty regions of the atmofphere. We muft recur to other principles for the true

LETTER XVII.

Of Light, and the Syftems of Defcartes and Nerwton.

HAVING fpoken of the rays of the fun, which are the focus of all the heat and light that we enjoy, you will undoubtedly ank, What are thefe rays? This is beyond queftion one of the moft important inquiries in phyfics, as from it an infinite number
folution of the fact. It is indifferent what portion of the air firft receives the heat; the effect depends entirely on the nature of it's diftribution. If the atmofphere were of an uniform'denfity throughout, the heat would at all heights be likewife the fame. But as the denfity varies according to the altitude, the diftribution of heat is affected by that circunftance, and follows a certain correfponding law. I would gladly develope the principles from which this theory is deduced, but the popular nature of the prefent treatife forbids all abftract difcuffion. I thall therefore content myfelf with giving a table of the diminution of heat at different altitudes.

Altitude in feet. Diminution of heat, in degrees, of Farenheit,

,000	-	-	-	-	12°
6,000	-	-	-	-	$24 \frac{1}{2}$
9,000	-	-	-	-	38
12,000	-	\square	-	-	53
15,000	-	-	-	-	$68 \frac{1}{2}$
18,000	-	-	-	-	86 $\frac{1}{2}$
21,000	-	-	-	-	$94 \frac{1}{2}$

The diminution of heat, on the afcent, is not quite fo great in extenfive continents; for the intercourfe between the rare and the denfe portions of the atmofphere is, in this cafe, neceffarily flow, and the heat, which is principally formed at the furface, will only be partially difperfed.

Vol. I.
number of phenomena is derived. Every thing that refpects light, and that renders objects vifible, is clofely connected with this inquiry. The ancient philofophers feem to have taken little intereft in the folution of it. They contented themfelves with faying that the fun is endowed with the quality of thining, of giving heat and light. But is it not worth while to inquire, Wherein does this quality confift? Do certain portions, inconceivably fmall, of the fun himfelf, or of his fubftance, come down to

It is a common miftake to fuppofe, that the fame heat obtains, at a certain depth, in every part of the globe. The fact is, that heat, originally derived from the fun, is communicated very dowly to the matter below the furface, which, therefore, does not feel the viciffitude of feafons, but retains the average temperature of the climate for many ages. Hence the utility of examining the heat of fprings, which is the fame with that of the fubftances through which they flow. The following table exhibits the average heat of places on the level of the fea, computed by the celebrated aftronomer, Profeffor Meyer, for every five degrees of latitude.

Latitude. Average Temperature. LLatitude. : Average Temperature

By comparing this table with the preceding, it is eafy to difcover, for any latitude, the altitude of the curve of congelation, or where the average temperature is. $32^{\circ} .-\boldsymbol{E} . \boldsymbol{E}$.
us? Or is the tranfmiffion fimilar to the found of a bell, which the ear receives? though no part of the fubftance of the bell be feparated from it, as I obferved in explaining the propagation and perception of found.

Defcartes, the firft of modern philofophers, maintained this laft opinion, and having filled the whole univerfe with a fubtile matter.compofed of fmall globules, which he calls the fecond element, he fuppofes that the fun is in a fate of continual agitation, which he tranfmits to thefe globules, and pretends that they again communicate their motion in an inftant to every part of the univerfe. But fince it has been difcovered that the rays of the fun do not reach us inftantaneoufly, and that they take eight minutes to fly through that immenfe diftance,* the opinion of Defcartes, which laboured befide under other difficulties, has been given up.

The great Nerwton afterwards embraced the former fyftem, and maintained that the luminous rays are really feparated from the body of the fun, and the particles of light thence emitted with that inconceivable velocity which brings them down to us in about eight minutes. This opinion, which is that of moft modern philofophers, particularly the Englifh, is

[^14]called the fytem of cmanation; it being imagined that rays emanate from the fun and other luminous bodies, as water cmanates or fprings from a fountain.

This opinion appears at firft fight very bold, and irreconcilcable to reafon. For were the fun emitting continually, and in all directions, fuch floods of luminous matter, with a velocity fo prodigious, he muft fpeedily be exhaufted, or at leaft fome alteration muft, after the lapfe of fo many ages, be perceptible. This, however, is contradicted by obfervation. It cannot be a matter of doubt, that a fountain which fhould emit ftreams of water in all directions, would be exhaufted in proportion to the velocity of the emiffion ; much more the fun, whofe rays are emitted with a velocity fo inconceivable. Let the particles of which rays of light are formed be fuppofed as fubtile as you pleafe, nothing will be gained : the fyftem will ever remain equally untenable. It cannot be affirmed that this emanation is not made in all directions: for, wherever you are placed, the whole fun is vifible, which proves inconteftably, that rays from every point of the fun are emitted toward the fpot which you occupy. The cafe is very different from that of a fountain, which fhould emit ftreams of water in all directions. For one point in the fountain could furnifi only one fream directed to a particular fpot, but every point of the fun's furface muft emit an infinite number, diffufing themfelves in all directions. This circumftance alone infinitely increafes the expenditure of luminous matter, which the fun would have to make.

A nother

Another difficulty, and which appears equally iniuperable, is, that the fun is not the only body which emits rays, but that all the fars have the fame quality: and as every where the rays of the fun muft be croffing the rays of the ftars, their collifion muft be violent in the extreme. How muft their direction be changed by fuch collifion! This collifion muft take place with refpect to all luminous bodies, vifible at the fame time. Each, however, appears diftinctly, without fuffering the flighteft derangement from any other: a certain proof that many rays may pars through the fame point, without difturbing each other, which feems irreconcileable to the fyftem of emanation. Let two fountains be fet a playing upon each other, and you will immediately perceive their different ftreams difturbed and confounded: it muft of confequence be concluded, that the motion of the rays of light is very effentially different from that of a jet d'eau, and in general from all fubftances forcibly emitted.

Confidering afterwards tranfparent bodies through which rays are freely tranfmitted in all directions, the fupporters of this fyftem are under the neceffity of affirming that thefe bodies contain pores, difpofed in ftraight lines, which iffue from every point of the furface, and proceed in all directions; it being inconceivable how there could be any line through which a ray of the fun might be tranfmitted with fuch amazing velocity, and even without the flightef collifion. Here then are bodies wonderfully po-
rous, which have the appearance, neverthelefs, of being extremely folid.

Finally, in order to enjoy vifion, the rays muft enter into the eye, and penetrate it's fubftance with the fame velocity. All thefe difficulties, taken together, will, I doubt not, fufficiently convince you, that the fyftem of emanation has in no refpect a foundation in nature ; and you will certainly be aftonifhed that it could have been conceived by fo great a man, and embraced by fo many enlightened philofophers. But it is long fince Cicero remarked, that nothing fo abfurd can be imagined as to find no fupporter among philofophers. For my part, I am too little a philofopher to adopt the opinion in queftion.
7th Y̌unc, 1760 .

LETTER XVIII.

Difficulties attending the Sy/tem of Emanation.

HOWEVER ftrange the doctrine of the celebrated Nerwton may appear, that rays proceed from the fun by a continual emanation, it has, however, been fo generally received, that it requires an effort of courage to call it in queftion. What has chiefly contributed to this is, no doubt, the high reputation of the great Englifh philofopher, who firft difcovered the true laws of the motions of the heavenly bodies:
and it is this very difcovery which led him to the fyftem of emanation.

Defcartes, in order to fupport his theory, was under the neceffity of filling the whole fpace of the heavens with a fubtile matter, through which all the celeftial bodies move at perfect liberty. But it is well known that if a body moves in air, it muft meet with a certain degree of refiftance; from which Neruton concluded, that however fubtile the inatter of the heavens may be fuppofed, the planets muft encounter fome refiftance in their motions. But, faid he, this motion is not fubject to any refiftance: the immenfe fpace of the heavens, therefore, contains no matter. A perfect vacuum, then, univerfally prevails. This is one of the leading doctrines of the Newtonian philofophy, that the immenfity of the univerfe contains no matter in the fpaces not occupied by the heavenly bodies. This being laid down, there is between the fun and us, or at leaft from the fun down to the atmofphere of the earth, an abfolute vacuum. In truth, the farther we afcend, the more fubtile we find the air to be; from whence it would apparently follow, that at length the air would be entirely loft. If the fpace between the fun and the earth be an abfolute vacuum, it is impoffible that the rays fhould reach us in the way of communication, as the found of a bell is tranfmitted by means of the air. For if the air, intervening between the bell and our ear, were to be annihilated, we fhould abfolutely hear nothing, let the bell be fruck ever fo violently.

Having eftablifhed, then, a perfect vacuum between the heavenly bodies, there remains no other opinion to be adopted but that of emanation ; which obliged Nerwton to maintain, that the fun and all other luminous bodies emit rays which are always particles, infinitely fmall, of their mafs, darted from them with incredible force. It muft be fuch to a very high degree, in order to imprefs on rays of light that inconceivable velocity with which they come from the fun to us in the face of eight minutes. But let us fee whether this theory be confiftent with Nerwton's leading doctrine, which requires an abfolute vacuum in the heavens, that the planets may encounter no manner of refiftance to their motions. You muft conclude, on a moment's reflection, that the fpace in which the heavenly bodies revolve, inftead of remaining a vacuum, muft be filled with the rays, not only of the fun, but likewife of all the other ftars which are continually paffing through it from every quarter, and in all directions, with incredible rapidity. The heavenly bodies which traverfe thefe fpaces, inftead c_{f} encountering a vacuum, will meet with the matter of luminous rays in a terrible agitation, which muft difurb thefe bodies in their motions much more than if it were in a ftate of reft.

Thus Nerwton, apprehenfive left a fubtile matter, fuch as Defcartes imagined, fhould difturb the motions of the planets, had recourfe to a very ftrange expedient, and quite contradictory to his own intention, as, on his hypothefis, the planets muft be expofed to a derangement infinitely more confiderable.

I have already fubmitted to you feveral other infuperable objections to the fyftem of emanation; and we have now feen that the principal and indced the only reafon which could induce Nerwton to adopt it, is fo felf-contradictory as wholly to overturn it. All thefe confiderations united, leave us no room to hefitate about the rejection of this ftrange fyftem of the emanation of light, however refpectable the authority of the philofpher who invented it.

Nerwton was, without doubt, one of the greateft geniufes that ever exifted. His profound knowledge, and his acute penetration into the moft hidden myfteries of nature, will be a juft object of admiration to the prefent, and to every future age. But the errors of this great man fhould ferve to admonifh us of the weaknefs of the human underftanding, which, after having foared to the greateft poffible heights, is in danger of plunging into manifeft contradiction.*
rotb Yure, 1760.
LETTER

* The pious as well as learned and ingenious Author, in the firft edition of thefe Letters, fubjoined to this reflection on Newoton's doctrine of emanation a feries of reflections which do equal honour to his underftanding and his heart. The French Editor, for what reafon it does not appear, has thought proper to fupprefs them. Could he imagine a philofophical work difgraced by a modeft and not unfeafonable infufion of religious fentiment? Be how it will, the Englifh Editor felt himfelf obliged to reftore the paffage, in prefenting the too long neglected Euler to the Britifh nation.It follows :
" If we are liable to weakneffes and inconfiftencies fo humiliat-

LETTER XIX.

> A different Syfem refpecting the Nature of Rays and of Liglt, propofed.

YOU have feen that the fyftem of the emanation of the rays of light labours under infuperable difficulties, and that the doctrine of a vacuum for the heavenly bodies to range in, is equally untenable; as the rays of light would completely fill it. Two things, then, muft be admitted: firf, the fpace through which the heavenly bodies move is filled with a fubtile matter ; fecondly, rays are not an actual emanation from the fun and other luminous bodies, in virtue of which part of their fubftance is

[^15]violently emitted from them, according to the doc̣trine of Newton.*

That fubtile matter which fills the whole fpace in which the heavenly bodies revolve, is called Ether. Of it's extreme fubtilty no doubt can be entertained. In order to form an idea of it, we have only to attend to the nature of air, which, though extremely fubtile, even on the furface of the earth, becomes more and more fo as we afcend ; and entirely ceafes, if I may ufe the expreffion, when it comes to be loft in the ether. The ether, then, is likewife a fluid as the air is, but incomparably finer and more fubtile, as we are affured that the heavenly bodies revolve

* The materiality of light is fupported by the moft convincing proofs that phyfics can afford. 'The inflection, refraction, and reflection of it's rays, fhew manifeftly that, like other bodies, it is fubject to attraction and repulfion; and the fimple application of the doctrine of forces not only explains fatisfactorily the phenomena, but affigns the precife effects with the moft perfect accuracy. The difficulties which feem to attend the theory of emanation vanifh on a clofe inveftigation. So vaft is the tenuity of light, that it utterly exceeds the powers of conception. The moft delicate inftrument has never been certainly put in motion by the impulfe of the accumulated fun-beams. Even on the moft unfavourable fuppofition it appears from calculation that, in the fpace of 385,130,000 Egyptian years (of 360 days) the fun would lofe only the $\overline{1,217,420 t h}$ of his bulk, from the continual effux of light. On the fame hypothefis the force impreffed upon the earth by each emiffion is fuch as would make it recede only the two billionth part of an inch in an hundred feconds, and it's effect, during a feries of ages, would therefore be altogether infenfible. After ftating numbers of a magnitude fo enormous, it would be fuperfluous to confider the quantity of froke which the eye receives.
freely through it, without meeting any perceptible refiftance. It is aifo without doubt poffeffed of elafticity, by means of which it has a tendency to expand itfelf in all directions, and to penetrate into fpaces where there would otherwife be a vacuum; fo that if by fome accident the ether were forced out of any fpace, the furrounding fluid would inftantly rufh in and fill it again.

In virtue of this elaficity, the ether is to be found. not only in the regions which are above our atmofphere, but it penetrates the atmofphere univerfally; infinuates itfelf by the pores of all bodies, and paffes irrefiftibly through them. Were you, by the help of the air-pump, to exhauft the air from a receiver, you muft not imagine that you have produced an abfolute vacuum; for the ether, forcing itfelf through the pores of the receiver, completely fills it in an inftant. Having filled a glafs tube of the proper length with mercury, and immerged it, when inverted, in the ciftern, in order to make a barometer, it might be fuppofed that the part of the tube which is higher than the mercury is a vacuum, becaufe the air is completely excluded, as it cannot penetrate the pores of glafs: but this vacuum which is apparent only, is undoubtedly fupplied by the ether, infinuating itfelf without the fmalleft difficulty.

It is by this fubtilty and elafticity of ether that I fhall by and by explain to you the remarkable phenomena of electricity. It is even highly probable that ether has an elafticity much fuperior to that of air, and that many of the phenomena of nature are
produced by means of it. For my own part I have no doubt that the compreffion of the air in gunpowder is the effect of the elaftic power of ether. And as we know by experiment that the air in it is condenfed almoft 1000 times more than common air, and that in this fate it's elafticity is likewife 1000 times greater, the elafticity of the ether muft in this cafe be fo too, and confequently 1000 times greater than that of common air. We fhall then have a juft idea of ether, in confidering it as a fluid in many refpects fimilar to air, with this difference, that ether is incomparably more fubtile and more elaftic.*

Having feen then that the air, by thefe very qualities, is in a proper ftate for receiving the agitations or fhakings of fonorous bodies, and to diffufe them in all directions, as we find in the propagation of found, it is very natural to fuppofe that ether may in the fame circumftances likewife receive agitations in the fame manner, and tranfinit them to the greateft diftances. \dagger As the vibrations of the air produce found,

* This, perhaps, is what in modern times they denominate the matter of heat. $-F$. E :
+ The hypothefis of an ether is a clumfy attempt to preclude the neceffity of admitting action at a diffance. It has been a receired maxim, that caufe and effect muft exift in the fame place; but the leaft reflection will convince us that, were this principle true, there could never be any communication of motion. The dificulty is really the fame, to conceive action exerted at the diftance of the thoufandth part of an inch, as at that of a thoufand miles. The particles of matter are far from being in mutual contact, other-
found, What will be the effect of thofe of ether? You will undoubtedly guefs at once light. It appéars in truth abundantly certain, that light is with refpect to ether, what found is with refpect to air; and that the rays of light are nothing elfe but the fhakings or vibrations tranfmitted by the ether, as found confifts in the fhakings or vibrations tranfmitted by the air.

The fun, then, lofes nothing of his fubftance in this cafe, any more than a bell in vibrating; and, in adopting this fyftem, there is no reafon to apprehend that the mafs of this orb fhould ever fuffer any diminution. What I have faid of the fun muft alfo be extended to all luminous bodies, fuch as fire, a wax taper, a candle, \&cc.

It will, undoubtedly, be objected, that thefe terreftrial luminaries evidently wafte, and that unlefs they are continually fed and kept up, they will be fpeedily extinguifhed; that confequently the fun muft in time be wafted away, and that the parallel of a bell is not accurate. But it is to be confidered, that thefe fires, befides their light, throw out fmoke, and a great deal of exhalation, which muft be carefully diftinguifhed from the rays of light. Now the fmoke and exhalation evidently occafion a confiderable diminution, which muft not be imputed
wife all bodies would have the fame denfity, and be totally incapable of compreffion. Were the univerfe an abfolute plenum, motion and animation would for ever ceafe. To afcribe to ether an extreme rarity, and at the fame time to affert that it fills all fpace, and pervades all bodies, is a contradiction in terms. But the hypothefis is fo big with abfurdity, that it deferves not a particular examination. See note, p. 41.-E. E.
to the rays of light; for were it poffible to feparate them from the finoke and other exhalations, the luminous quality alone would occafion no expenditure. Mercury may, by means of art, be rendered luminous, as you have probably feen, and that without any' diminution of it's fubftance, which proves that light alone produces no wafte of luminous bodies. Thus though the fun illuminates the whole world by his rays, he lofes nothing of his own fubftance, his light being only the effect of a certain agitation, or violent concuffion of his minute particles, communicated to the adjoining ether, and thence tranfmitted in all directions by means of this fluid to the remoteft diftances, as a bell when ftruck communicates it's own agitation to the circumambient air. The more we confider this parallel between fonorous and luminous bodies, the more we fhall find it conformable to nature, and juftifiable by experience; whereas the more we attempt to reconcile the phenomena of nature to the fyftem of emanation, the more dificulties we encounter.
> $14^{\text {th }}$ June, 1760.

LETTER XX.

Of the Propagation of Ligbt.

THE propagation of light in the ether is produced in a manner fimilar to that of found in the air; and juft as the vibrations occafioned in the particles of air conftitutes found, in like manner the vibration
of the particles of ether conftitutes light or luminous rays; fo that light is nothing elfe but an agitation or concuffion of the particles of ether, which is every where to be found on account of it's extreme fubtilty, in virtue of which it penetrates all bodies.

Thefe bodies, however, modify the rays of light in many different ways, by tranfmitting or ftopping the propagation of the concuffions. Of this I fhall treat at large in the fequel. I confine myfelf at prefent to the propagation of rays in the ether itfelf, which fills the immenfe fpace in which the heavenly bodies revolve. There the propagation takes place in perfect liberty. The firft thing which here prefents itfelf to the mind is the prodigious velocity of the rays of light, which is about 900,000 times more rapid than that of found, though this laft travels no lefs than $\mathbf{r} 000$ feet in a fecond.

This amazing velocity would be fufficient of itfelf to overturn the fyftem of emanation; but in that which I am attempting to eftablifh, it is a natural confequence, from the principles laid down, as I hope to demonftrate. They are the fame with thofe on which is founded the propagation of found in the air, and this depends at once on it's denfity and elafticity. It is evident that if the denfity of air were diminifhed, found would be accelerated, and if the elafticity of the air were increafed, the fame thing would happen. If the denfity of the air diminifhed, and it's elafticity increafed at once, we fhould have a two-fold reafon for the increafe of the velocity of found. Let us conceive, then, the denfity of the air diminifhed,
diminifhed, and it's elafticity increafed, till it's denfity and elafticity became equal to thofe of ether, and we fhould then no longer be furprifed that the velocity of found had become many thoufands of times greater than it actually is. For you will be pleafed to remember, that, according to the firt ideas we formed of ether, this fluid muft be inconceivably rarer, and more elaftic than air. Now both of thefe qualities equally contribute to accelerate the velocity of vibrations. From this explanation, the prodigious velocity of light is fo far from prefenting any thing irreconcileable to reafon, that it rather perfectly harmonizes with the principles laid down; and the parallel between light and found is in this refpect fo firmly eftablifhed, that we may confidently maintain, That if air fhould become as fubtile and as elaftic as ether, the velocity of found would become as rapid as that of light.

The fubtlity of ether, then, and it's great elafticity, are the reafon which we affign for the prodigious velocity of the motion of light; and fo long as the ether preferves this fame degree of fubtlity and elafticity, this velocity muft continue the fame. Now it cannot be doubted that the ether has, through the whole univerfe, the fame fubtlity and the fame elaf. ticity. For were the ether lefs elaftic in one place than in another, it would force itfelf into it till the equilibrium was perfectly reftored. The light of the ftars, therefore, moves with as great velocity as that of the fun; and as the fars are at a much greater diftance from us than the fun, a much greater quan-
tity of time is requifite to tranfmit their rays to us. However great the diftance of the fun may appear, whofe rays, neverthelefs, reach the furface of our globe in eight minutes, the fixed ftar neareft to us is at leaft 400,000 times more diftant than the fun: a ray of light iffuing from that far will employ then 400,000 times eight minutes in travelling to us, that is 53,333 hours, or 2,222 days, or fix years nearly.

It is then upwards of fix years fince the rays of light iffued from that fixed ftar, the leaft remote and probably the moft brilliant, in order to render it vifible to us, and thefe rays have employed a period fo confiderable to fly through the fpace which feparates us from that ftar. Were God juft now to create a new fixed ftar, at the fame diftance, it could not become vifible to us till more than fix years had elapfed, as it's rays require that length of time to travel this diftance. Had one been created at the beginning of the world a thoufand times more diftant than that which I have mentioned, it could not yet be vifible to us, however brilliant, as 6000 years are not yet elapfed fince the Creation. The firft preacher of the court of Brunfwick, Mr. Jerufalem, has happily introduced this thought in one of his fermons; the paffage runs thus:
" Raife your thoughts from the earth which you " inhabit to all the bodies of the vaft univerfe, which " are fo far above you: launch into the immenfity " of fpace which intervenes between the moft re" mote which your eyes are able to difcover, and " thofe whofe light, from the moment of creation
" till now, has not as yet, perhaps, come down to us. " The immenfity of the kingdom of God juftifies "this reprefentation." (Sermon on the Heavens, and Eternal Beatitude.)

I flatter myfelf that thefe reflections will excite a defire of further inftruction refpecting the fyftem of light, from which is derived the theory of colours, and of vifion.
17th fune, 1760 .

LETTER XXI.

Digreflion, on the Diftances of the Heavenly Bodies, and on the Nature of the Sun, and his Rays.

THE obfervations which I have been making re. fpecting the time which the light of the fars employs in making it's progrefs down to us, convey a ftriking idea of the extent and greatnefs of the univerfe. The velocity of found, which flies through the fpace of 1000 feet in a fecond, furnifhes us with nearly the firft ftandard of meafurement. It is about 200 times more rapid than the pace of a man who is a good walker. Now the velocity of the rays of light is 900,000 times ftill more rapid than that of found : thefe rays accordingly perform, every fecond, a courfe of 900 millions of feet, or 37,500 German miles.*

What aftonifhing velocity! Yet the neareft fixed

[^16]ftar is fo remote, that it's rays, notwithftanding this prodigious velocity, would take more than fix years in defcending to us. And were it poffible for a great noife, fuch as that of the firing of a cannon, iffuing from that ftar, to be conveyed to our ears, it would require a period of $5,400,000$ years to reach us. And this is applicable only to thofe fars which are the moft brilliant, and are probably neareft to us. Thofe which appear the fmalleft are, very probably, ten times ftill farther remote, and more. A whole century then, at leaft, muft elapfe, before the rays of thefe ftars could poffibly reach us. How prodigious muft that diftance be, which cannot be paffed through in lefs than 100 years, by a velocity which flies at the rate of 37,500 German miles every fecond!

Were, then, one of thefe ftars to be juft now annihilated, of eclipfed only, we fhould fill continue to fee it for 100 years to come, as the laft rays which it emitted could not reach us in lefs time.

The generality of mankind is very far from having any thing like juft ideas refpecting the vaft extent of the univerfe. Many confider it as a work of little importance, which chance alone might have produced. But what muft be the aftonifhment of one who reflects, on obferving, that all thefe immenfe bodies are arranged with the mof confummate wifdom, and that the more knowledge we acquire on the fubject, though it muft ever be very imperfect, the more we muft be difpofed to admire their order and magnificence?

I return to the great luminous bodies, and parti-
cularly the fun, which is the principal fource of the light and heat which we enjoy on the earth. It will be afked, in the firft place, Wherein confifts the light which the fun is inceffantly diffufing through the whole univerfe, without ever fuffering the fmalleft diminution? The anfwer is obvious, according to the fyftem which I have been endeavouring to eftablifh. But that of emanation furnifhes no fatisfactory folution. The whole univerfe being filled with that extremely fubtile and elaftic fluid, which is called ether, we muft fuppofe, in all the parts of the fun, an inceffant agitation, by which every particle is in a conftant motion of vibration, and this, by communicating itfelf to the circumambient ether, excites in that fluid a fimilar agitation, and is thence tranfmitted to regions the moft remote, with the rapidity which I have been defcribing.

And, to keep up the parallel between fotund and light, the fun would be in a ftate fimilar to that of a bell which fhould be ringing continually. The particles of the fun muft, confequently, be kept in this inceffant agitation, to produce in the ether the undulations which we call rays of light. But it is ftill no eafy matter to explain, by what power this agitation in the particles of the fun is conftantly kept up, as we obferve, that a match does not long continue burning, but prefently goes out, unlefs it be fupplied with combuftible matter. But it muft be remarked, that as the fun is a mafs many thoufand times greater than our whole globe, if it is once thoroughly inflamed, it may continue in that fate
for feveral ages, without fuffering any fenfible diminution. Befides, the cafe is not the fame with the fun and our fires and candles, a confiderable part of whofe fubftance is diffipated in fmoke and exhalations, from which a real wafte refults. Whereas, though perhaps fome particles may be forced from the fun in form of fmoke, they cannot remove to a great diftance, but fpeedily fall back into it's mafs, fo that there cannot be any real expenditure, to occafion a diminution of his fubftance.*

The only thing of which we are ftill ignorant refpecting this fubject, is, the power which inceffantly maintains all the particles of the fun in this agitation. But as it contains nothing inconfiftent with good fenfe, and as we are under the neceffity of acknowledging our ignorance of many other things much lefs remote than the fun, we ought to be fatiffied, if our ideas are not involved in contradiction.

$$
21 / t \text { fune, } 1760 .
$$

[^17]
LETTER XXII.

Elucidations on the Nature of luminous Bodies, and their Difference from opaque Bodies illumined.

THE fun being a luminous body, whofe rays are univerfally diffufed in all directions, you can no longer be at a lofs to account for this wonderful phenomenon, which confifts in the fhaking, or vibration, with which all the particles of the fun are agitated. The parallel of a bell lends confiderable affiftance toward the explanation of this fact. But it is obvious, that the vibrations produced by light, mult be much more vehement and rapid than thofe produced by found, ether being incomparably more fubtile than air. A feeble agitation not being capable of fhaking the air fo as to produce found in it, that of a bell, and of all other fonorous bodies, are too feeble relatively to ether, to produce in it the vibration which conftitutes light.

You will recollect, that in order to excite a perceptible found, more than 30 , and lefs than 755^{2} vibrations muft be produced in a fecond; the air being too fubtile to admit of a fenfible effect from a found confifting of lefs than 30 vibrations in a fecond, but not fufficiently fo to receive one of more than 7552 vibrations in the fecond. A note higher than this could not be at all heard. It is the fame with refpct to ether; 755^{2} vibrations, produced in a fecond, could not poffibly act upon it, becaufe of it's greater
fubtilty. It requires vibrations much more frequent. An agitation fo rapid could not take place but in the minuteft particles of bodies which elude our fenfes. The light of the fun, then, is produced by a very violent agitation, which affects all his infinitely minute particles, each of which muft fhake many thoufands of times every fecond.

It is a fimilar agitation which likewife produces the light of the fixed ftars, and of all fires, fuch as candles, tapers, torches," \&c. which give us light, and fupply the place of the fun during the night. On attentively obferving the flame of a wax-light, you will eafily perceive that, in the minuteft particles, there is a conftant and furprizing agitation; and I do not apprehend that my fyitem is liable on this fide to any contradiction, while that of Newton requires a moft enormous agitation, capable of launching the minuteft particles with the velocity of $37,500^{*}$ German miles in a fecond.

This, then, is the explanation of the nature of bodies luminous of themfelves: for there are luminous bodies which are not fo immediately, fuch as the moon and the planets, which are fimilar to our globe. We fee the moon only when, and in as far as, fhe is illuminated by the fun; and this is the cafe of all terreftrial bodies, fires excepted, which have a light of their own. But other bodies, which are denominated opaque, become vifible to us only when they are illuminated by fome luminous body.

In a very dark night, or in an apartment, fo clofely

[^18]Thut on every fide, that no light can find adminion, to no purpofe will you turn your eyes toward the objects which furround you in the dark: you perceive nothing. But the moment a taper is introduced, you immediately fee, not the taper only, but the other bodies which were before invifible. We have here, then, a very effential difference between luminous and opaque bodies. I have already employed the term opaque to denote bodies which are not tranfparent; but it comes to almoft the fame thing, and we muft accommodate ourfelves to the common modes of expreffion, though they are not perfectly accurate. Luminous bodies are vifible by their own light, and never affect our organs of fight more than when the darknefs is otherwife moft profound. Thofe which I here denominate opaque, are rendered vifible to us only by means of a light that is foreign to them. We perceive them not while they remain in darknefs; but as foon as they are expofed to a luminous body, whofe rays ftrike upon them, they become vifible; and they difappear the moment that foreign light is withdrawn.' It is not even neceffary, that the rays of a luminous body fhould fall upon them immediately; another: opaque body, when well illuminated, produces nearly the fame effect, but in a feebler manner.

The moon is an excellent inftance. We know that the moon is an opaque body; but when the is illuminated by the fun, and we fee her during the night, the diffures a feeble light over all opaque bodies, and renders vifible to us thofe which we could not have perceived
perceived without her affiftance. Placed in the day time in an apartment, whofe afpect is toward the north, and into which, of courfe, the rays of the fun cannot enter, it is, however, perfectiy clear, and I am able to diftinguifh every object. What can be the caufe of this clearnefs, but that the whole heaven is illuminated by the fun? What we call the azure fky , and befides, the walls oppofite to my apartment, and the other furrounding objects, are likewife illuminated, either immediately by the fun, or mediately by other opaque bodies, expofed to the action of that focus of light ; and the light of all thefe opaque, but illuminated, bodies, as far as it has admiffion into my apartment, renders it luminous, and that in proportion as the windows are high, wide, and well placed. The glafs is little or no interruption, being, as I have already remarked, a tranfparent body, which freely tranfmits the rays of light.

When I completely exclude the light from the apartment, by clofing the window-fhutters, I am reduced to a ftate of darknefs, and difcern no object, unlefs I call for a candle. Here, then, is an effential difference between luminous and opaque bodies; and likewife a very ftriking refemblance, namely, that opaque bodies, when illuminated, illuminate other opaque bodies, and produce, in this refpect, nearly the fame effect as bodies luminous of themfelves. The explanation of this phenomenon has, hitherto, greatly perplexed philofophers, but, I fatter myfelf, that my folution of it has been clear and fatisfactory.
24tb Fune, 1760.

LETTER XXIII.

How Opaque Bodies become vifible. Nerwton's Syfem, of the Reflection of Rays, propofed.

BEFORE I attempt an explanation of the phenomenon of opaque bocies becoming vifible when they are illuminated, it muft be remarked, in general, that we fee nothing but by means of the rays which enter into our eyes. When we look at any object whatever, rays iffuing from every point of that object, and entering into the eye, paint upon it, if I may ufe the expreffion, the image of the object. This is not mere conjecture, but may be demonftrated by experiment. Take, for example, the eye of an ox, or of any animal recently killed, and, aftcr having uncovered the bottom, you find all the objects which were before it painted there. As often then as we fee an object, the image of it is painted on the bottom of our eyes; and this is produced by the rays which proceed from the object to us. I fhall afterwards take occafion to go into a more minute detail on the fubject of vifion, and explain in what manner the images of objects are formed on the bottom of the eye : let this general remark fuffice for the prefent.

As we fee opaque bodies only when they are illuminated, this is a proof, that there muft proceed from every point of thefe bodies rays of light which fubfift only during the illumination. The moment they are placed in the dark thefe rays difappear. They are not proper then to opaque bodies; their origin
origin muft be fought in the manner in which other bodies illuminate them. And this is the great queftion, How illumination alone is capable of producing rays on opaque bodies, or of putting them in nearly the fame ftate as luminqus bodies are, which, by an agitation in their minuteft particles, produce rays of light?

The great Nerwton, and other philofophers, who have examined the fubject, affign reflection as the caufe of this phenomenon: it is, therefore, of the higheft importance, that you fhould form a juft idea of what is called reflection.

This name is given to the repulfion of one body ftruck againft another, as may be feen in the game of billiards. When the ball is ftruck againft the cufhion or ledge of the billiard table, it recoils again; and this retrograde motion is termed reflection. It is neceffary, here, to attend to a diftinction between two cafes. Let us fuppofe A B (plate I. fig. 7.) to be the ledge of a billiard table. The firft cafe is this: When you play the ball D perpendicularly againft the ledge, in the direction of D C , perpendicular to A B, and, confequently, the adjacent angles A C D, and BCD , are right angles : in this cafe, the ball will be driven back, or reflected, in the fame line D C. The other cafe is, when the ball is played obliquely againft the ledge, fuppofe in the line E C, forming, with A B , an acute angle A CE, this is called the angle of incidence. The ball will, in this cafe, be repelled from the ledge, in the direction of the line C F, fo that this line flall make, on the other
fide, with the ledge B C, an angle B C F, exactly equal to the angle of incidence A C E. This angle, B C F, formed by the line in which the ball recoils, is called the angle of reflection. And this law always takes place when a body in motion meets with an obftacle.

A cannon ball, fhot againft a wall fufficiently ftrong to refift it, is reflected conformably to this law. It extends, in like manner, to founds, which are frequently reflected from certain bodies; and you know that this reflection of found is called echo. It cannot be doubted, that the fame thing frequently takes place with refpect to the rays of light. The objects which we fee in mirrors, are reprefented to us by the reflection of rays, and every well polifhed furface reflects the rays of light which fall upon it. It is undoubtedly certain, therefore, that there are cafes without number in which the rays that fall on certain bodies are reflected; and philofophers have thence taken occafion to maintain, that opaque bodies are rendered vifible by means of reflected rays.

I fee juft now houfes, oppofite to my windows, which are illuminated by the fun. According, then, to the opinion of thofe philofophers, the rays of the fun falling on the furface of thefe houfes, are reflected from them; they enter into my apartment, and render thefe houfes vifible to me. In the fame manner, if we believe thofe philofophers, the moon and the planets become vifible, and thefe are, unqueftionably, opaque bodies. The rays of the fun which
fall on thefe bodies, and illuminate the parts which are expofed to them, are reflected, and are thence tranfmitted to us, juft as if the bodies were luminous of themfelves. According to this opinion, we fee the moon and the planets only by the rays of the fun which they reflect; and you muft frequently have heard it affirmed, that the light of the moon is a reflection of the light of the fun. In the fame manner, fay they, the rays of the fun are reflected by the firft opaque bodies which are expofed to them, on other bodies of the fame nature, and undergo a feries of fimilar reflections, till they are entirely weakened.

But, however plaufible this opinion may at firft fight appear, it involves fo many abfurdities, when clofely examined, that it is abfolutely untenable, which I hope to demonftrate, as a preparation for the true folution of this phenomenon.
28tb Fune, 1760 .

LETTER XXIV.

Examination and Refutation of Nervoton's Syfem.

IAFFIRM, then, that when we fee an opaque body illuminated by the fun, it is impoffible to maintain that it reflects luminous rays, and that, by means of fuch rays, it is rendered vifible to us. The example of a mirror, which, undoubtedly, reflects. the rays, and is employed to fupport this opinion,
rather
rather confutes it. The mirror, beyond contradiction, fends back the rays which fall upon it; but when thefe reflected rays enter into our eyes, What do they reprefent? You will readily anfwer, that it is not the mirror, but the objects from which they originally proceeded; and the reflection does nothing: elfe, but enable us to fee thefe objects in another place. Befides, we fee thofe objects, not on the furface of the mirror, but rather within it, and it may be faid with truth, that the mirror itfelf remains invifible to us.

But, on looking at an opaque body illuminated by the fun, we do not fee in it the image of that glorious orb; we fee only the furface of the bodies, with all the variations to be found on them. We perceive, then, a very effential difference between the rays which are reflected from a mirror, and thofe by means of which opaque bodies are rendered vifible. But there is; befides, another difference equally palpable in the mirror; for on changing the place of the objects, or our own fituation, the appearance will always change, and the rays, reflected from the mirror, will continually reprefent to our eyes other images, correfponding to the nature and pofition of the objects, and to the place where we are fationed: but, as I have already faid, thefe reflected rays never reprefent to us the mirror itfelf.

Now, let a body be illuminated by the fun, or other bodies, whether lumincus or opaque, already illuminated; in whatever manner this body may change it's place, or we change our's relatively to it,
it's appearance is always the fame; we fee always the fame object, and remark in it no change relative to the different circumftances above mentioned. This furnifhes a new proof, that we do not fee opaque bodies by means of the rays reflected from their furface.*

* This can hardly be deemed a fair ftatement. It is true, that opaque bodies are feen only by reflected light, but it by no means, follows, that all the incident light is again reflected. Some bodies are, by their conftitution, difpofed to reflect certain kinds of rays the moft freely, and as the reft are abforbed, the peculiar colour predominates. This colour will, therefore, not be the fame, whatever be the quality of the incident light, but will receive an analogous fhade. For the fame reafon, no fubftance reflects only one fpecies of rays. The elective attractions and repulfions, between the particles of light and a body, are moft remarkable at very minute diffances; and hence the colour is prominent when the furface is rough, for the light, fuffering then a partial repulfion only, gains a nearer approach. I cannot imagine how Mr. Euler would explain thefe facts on his own principles.

It is in a polifhed furface only, that the furrounding bodies can be feen by reflection, for diftinct vifion requires the rays, proceeding from different points, to be tranfmitted with regularity. No fubftance is, indeed, perfectly fmooth, but the different repulfions, exerted by the fuperficial particles, may balance each other, and produce an uniform effect, at the diftance where the reflection takes place. Mr. Euler's principles would lead to the conclufion, that polifh is not at all neceffary to a mirror. Echo is formed from furfaces which are very uneven, fince the air is heaped on the obftacle, and the principal reflux of the undulation commences at a fenfible diftance from it. The fame obtains in water, though in a lefs degree ; and is, in general, more remarkable, in proportion to the rarefaction of the fluid. How wonderful, then, in that refpect, muft ether be, which is fuppofed to be the moft fubtle of all fluids? We might expect the walls of a houfe to reflect the molt enchanting picture of the landfcape in front. -E. E.

An objection will, perhaps, be ftarted, drawn from the dove's neck, and certain kinds of ftuff, which prefent different objects, according as our point of view changes. But this in no refpect weakens my conclufion with regard to ordinary opaque bodies, which are not fubject to this change. The objection only proves, that thefe fingular objects are endowed with certain qualities: as, for example, that their minuter particles are finely polifhed, and that a real reflection takes place, befide the ufual and ordinary manner in which bodies are rendered vifible to us.

Now, it is eafy to comprehend, that this reflection muft be clearly diftinguifhed from the manner in which ordinary opaque bodies are illuminated.

Finally, the rays reflected from a mirror always reprefent to us, likewife, the colours of the bodies from which they originally proceed, and the mirror, which reflects, makes no change in this refpect. One opaque body illuminated by any other body, in whatever manner, always prefents the fame colours; and every body may be faid to have it's proper colour. This circumfance abfolutely overturns the opinion of all thofe who maintain, that we fee opaque bodies by means of the rays which their furface reflects.

Putting together all the reafons which I have now fubmitted to your confideration, there can be no hefitation in pronouncing, that this opinion is totally untenable in philofophy, or rather, in phyfics. I cannot, however, flatter myfelf with the hope, that philofophers, wedded to opinions once adopted,

Vol. I.
H
fhould
fhould yield to thefe reafons. But the naturalift, who is more nearly related to the mathematician, will have lefs difficulty in refigning an opinion, overthrown by reafons fo convincing. You will again recollect what Cicero has faid on this fubject : That nothing fo abfurd can be conceived, as not to be fupported by fome philofopher. In fact, however ftrange the fyftem which I have been refuting may appear to you, it has, hitherto, been propagated and defended with much warmth.

It is impoffible to fay, to what a degree the difficulties and contradictions which I have been endeavouring to expofe, were unknown to, or overlooked by, the partifans of this fyftem. The great Nerwton himfelf ftrongly felt their force: but as he refted in a very untenable idea refpecting the propagation of light, it is not to be wondered at, that he fhould overlook thefe great difficulties; and, in general, depth of underftanding does not always prevent a man from falling into abfurdity, in fupporting an opinion once embraced.

But if this fyftem, that opaque bodies are rendered vifible by reflected rays, be falfe, fay it's partifans, What then is the true one? They even think it impoffible to imagine another explanation of this phenomenon. It is, befides, rather hard and humiliating for a philofopher to acknowledge ignorance of any fubject whatever. He would rather maintain the groffeft abfurdities; efpecially if he poffeffes the fecret of involving them in myfterious terms, which no one is capable of comprehending. For in this cafe_{2}
cafe, the vulgar are the more difpofed to admire the learned; taking it for granted, that what is obfcurity to others, is perfectly clear to them. We ought always to exercife a little miftruft, when very fublime knowledge is pretended to, knowledge too fublime to be rendered intelligible. I hope I fhall be able to explain the phenomenon in queftion, in fuch a way as to remove every difficulty.

> 1/ f fuly, 1760.

LETTER XXV.

A different Explanation of the Manner in which opaque Bodies illuminated become viffble.

ALL the phenomena of opaque bodies, which I have unfolded in the preceding letter, inconteftably demonftrate, that, when we fee an opaque body illuminated, it is not by rays reflected from it's furface, that it becomes vifible, but becaufe it's minuter particles are in an agitation fimilar to that of the minuter particles of luminous bodies; with this difference, however, that the agitation in opaque bodies is far from being fo ftrong as in bodies luminous of themfelves; for an opaque body, however much illuminated, never makes on the eye an impreffion fo lively as luminous bodies do.

As we fee the opaque bodies themfelves, but by no means the images of the luminous bodies which
enlighten them, as muft be the cafe, if we faw them by the reflection of their furface; it muft follow, that the rays emitted by opaque bodies are proper to them, juft as the rays of a luminous body are peculiar to itfelf. As long as an opaque body is illuminated, the minuter particles of it's furface are in a fate of agitation proper to produce, in the ether, a motion of vibration, fuch as is neceffary for forming rays, and for painting in our eyes the image of the body from which they proceed. For this effect, rays muft be diffufed, from every point of the furface, in all directions; as experience evidently confirms. For, from whatever fide we look at an opaque body, we fee it equally in all it's points; from which it follows, that every point emits rays in all directions. This circumftance effentially diftinguifhes thefe rays from fuch as are reflected, whofe direction is always determined by that of the rays of incidence; fo that if the incident rays proceed from one fingle quarter, fay the fun, the reflected rays can follow only one fingle direction.

It muft be admitted, then, that when an opaque body is illuminated, all the particles on it's furface are put in a certain agitation, which produces rays, as is the cafe with bodies luminous of themfelves. This agitation, likewife, is ftronger, in proportion as the light of the illuminating body is more intenfe. Thus the fame body, expofed to the fun, is agitated much more violently, than if, in a room, it were illuminated only by day-light, or in the night-time, by a taper, or by the maon: In the firft cafe, it's
image is painted with much greater vivacity on the bottom of the eye, than in the others, efpecially the laft ; the light of the moon being fcarcely fufficient to enable us to diftinguifh, or to read, writing of a large fize. And when the opaque body is conveyed into a clofe room, or into the dark, nothing is then to be feen ; a certain proof, that the agitation in it's parts has entirely ceafed, and that they are now in a ftate of reft.

In this, therefore, confifts the nature of opaque bodies; their particles are, of themfelves, at reft, or, at leaft, deftitute of the agitation neceffary to produce light. But thefe fame particles are fo difpofed, that when illuminated, or ftruck with rays of light, they are immediately put into a certain agitation, or motion of vibration, proper to produce rays; and the more intenfe the light is, which illuminates thefe bodies, the more violent alfo is this agitation. As long as an opaque body is illuminated, it is in the fame ftate as luminous bodies; it's particles are agitated in the fame manner, and are capable of exciting, of themfelves, rays in the ether ; with this difference, that the agitation kept up in luminous bodies by an intrinfic force, fubfiifts always of itfelf; whereas, in opaque bodies, this agitation is only momentaneous, and produced by the motion of the light which illuminates them.

This explanation is confiftent with every phenomenon, and labours under none of the difficulties which determined us to abandon the other, namely, that founded on reflection. Whoever will take the
trouble condidly to weigh all thefe reafons, muft admit their force. But a very great difficulty ftill remains to be folved: How comes it that illumination, fimply, can put the particles of an opaque body into an agitation capable of producing rays; and that this agitation fhould always continue nearly the fame, whatever difference there may be in the illumination?

I acknowledge, that were it impoffible to anfwer this queftion, it would be a great defect in my theory, though it would not amount to a complete refutation, for it contains nothing contradictory. Suppofing I were ignorant, how illumination produces an agitation in the particles of opaque bodies, this would only prove that the theory is incomplete : and till it is demonftrated to be abfolutely impoffible that illumination fhould produce this effect, my fyftem muft fubfift. But I fhall endeavour to fupply this defect, by fhewing you, how illumination agitates the minuteft particles of bodies.
5th fuly, 1760 .

LETTER XXVI.

Continuation of the fame Subject.

IHAVE undertaken to fhew how the illumination of an opaque body muft produce in it's minuteft particles, an agitation proper to excite the rays of light, which render that fame opaque body vifible.

The parallel between found and light, which differ only in refpect of lefs and more, light being the fame thing relatively to ether that found is relatively to air, this parallel, I fay, will enable me to fulfil my engagement. Luminous bodies muft be compared to mufical inftruments actually in a fate of vibration. It is a matter of indifference whether this be the effect of an intrinfic or of a foreign power: : it is fufficient for my purpofe that found is emitted. Opaque bodies, as long as they are not illuminated, muft be compared to mufical inftruments not in ufe, or, if you will, to ftrings which emit no found till they are touched.

The queftion, then, being transferred from light to found, is refolved into this, Whether it be poffible for the ftring of an inftrument, in a ftate of reft, when brought within the fphere of activity of the found of inftruments in a fate of vibration, to receive, in certain circumftances, fome agitation, and emit found, without being touched? Now this is confirmed by daily experience. If, you take the trouble, during a concert, to attend to a particular ftring in proper tune, you will obferve that ftring fometimes to tremble without having been touched, and it will emit the fame found as if it had been immediately put into vibration. This experiment will fucceed ftill better, if the inftruments ftrike the fame note with the ftring. Confider attentively the ftrings of a harpfichord not played upon, while a violin ftrikes the note a, for example, and you will obferve on the harpfichord the ftring of the fame note begin
fenfibly to tremble, and even to emit found, without having been touched; fome other chords will likewife be agitated, particularly thofe which are diftant an octave, a fifth, and even a third, provided the inftrument be perfecily in tune.

This phenomenon is well known to muficians, and Mr. Rameau, one of the moft celebrated French compofers, eftabiifhed his principles of harmony upon it. He maintains, That octaves, fifths, and thirds, muft be confidered as confonances, becaufe one chord is agitated by the found only of another chord, which is in unifon, or an octave, a fifth, or a third, from the firit. But it muft be admitted that the principles of harmony are fo well eftablifhed by the fimplicity of the relations which founds have to each other, that they have no need of a new confirmation. In truth the phenomenon obferved by Mr. Rameau is a very natural confequence from the principles of harmony.

To render this more fenfible, let us attend to two chords wound up to unifon; on ftriking the one, the other will begin of itfelf to tremble, and will emit it's found. The reafon is abundantly clear ; for as a chord communicates to the air by it's trembling a motion of vibration fimilar to it's own, the air, agitated by this motion of vibration, muft reciprocally make the chord tremble, provided that by it's degree of tenfion, it be fufceptible of this motion. The air being put into vibration, frikes the chord ever fo little at every reverberation, and the repetition of firokes foon imprefles on the chord a fenfible mo-
tion ; becaufe the vibrations to which it is difpofed by it's tenfion accord with thofe of the air. If the number of vibrations in the air is the half, or the third, or any other whofe relation is fufficiently fimple, the chord does not receive a new impulfe at every vibration, as in the preceding cafe, but only at the fecond, or the third, or the fourth, which will continue to increafe it's tremulous motion, but lefs than in the firft cafe.

But if the vibrations of the air have not any fimple relation with that which correfponds to the chord, the agitation of that fluid will produce no effect whatever upon it; the vibrations of the chord, if there be any, not correfponding to thofe of the fluid, the following impulfions of the air deftroy for the moft part the effect which the firft might have produced; and this is completely confirmed by experience. Thus when a chord is fhaken by a found, that found mult, in order to it's being perceptible, be precifely the fame with that of the chord. Other founds which have a confonance with that of the chord, will produce, it is true, a fimilar but lefs fenfible effect, and diffonances will produce none at all. This phenomenon takes place not only in mufical ftrings, but in all fonorous bodies whatever. One bell will refound by the noife only of another bell which is in unifon with it, or at the diftance of an octave, a fifth, or a third.

The infance of a perion who could break glaffes by his voice farther confirms what I have advanced, When a glafs was prefented to him, by frriking it he found
found out the note; he then began to fquall in unifon, and the glafs immediately caught the vibration; proceeding to give to his voice all the force he was able, always preferving the unifon, the vibration of the glafs became at length fo violent, that it broke. It is confirmed, then, by experience that a chord and every other fonorous body is put into vibration by it's kindred found. The fame phenomenon muft take place with regard to opaque bodies, of which the minuter particles may be put into a fate of agitation by illumination only: which is the queftion I propofed to folve. The following letter will contain a more ample difcuffion of it.
8th fuly, 1760 .

LETTER XXVII.

Conclufion: Clearnefs and Colour of opaque Bodies illumined.

AFTER what has juft been fubmitted to your confideration, you will no longer be furprifed that an opaque body is capable of receiving, from illumination alone, an agitation in it's particles fimilar to that of the particles of luminous bodies, and which gives them the property of producing rays that render them vifible. Thus the great objection to my explanation of the vifibility of opaque bodies is happily removed; while the other theory, found, ed on the rellection of rays, has to encounter diffi-
culties which grow in proportion as you attempt to make a more direct application of them to known phenomena.

It is then an eftablifhed truth, that the particles of the furfaces of all bodies which we fee, undergo an agitation fimilar to that of a chord in vibration, but their vibrations are much more rapid; whether it be that this agitation is the effect of an intrinfic force, as in bodies luminous of themfelves, or whether it be produced by the rays of light which fall upon the bodies, that is to fay by illumination, as is the cafe in opaque bodies. It is falfe, then, that the moon being an opaque body, reflects the rays of the fun, and that, by means of this reflected light, fhe is rendered viiible to us, as is commonly underftood. But the rays of the fun, falling on the furface of the moon, excite in it's particles a concuffion, from which refult the rays of the moon; and thefe, entering into our eyes, paint it's image there; it is the fame with the other planets, and with all opaque bodies. This agitation of opaque bodies, when illumined, lafts only during the illumination which is the caufe of it: and as foon as an opaque body ceafes to be illumined, it ceafes to be vifible.

But is it not poffible that this agitation, once impreffed on the particles of an opaque body, may be for fome time kept up, as we fee that a ftring once ftruck, frequently continues to vibrate, though no new impreffion be made upon it? I do not pretend to deny the fact: I even believe that we have examples of it in thofe fubftances whịch Mr. Margraff prefented
prefented to you, and which, once illumined, preferve their light for fome time, though conveyed into a dark room. This, however, is an extraordinary cafe; the vibration of the minuter particles difappearing in all other bodies, with the illumination which occafioned it. But, this explanation, which thus far is perfectly felf-confifent, leads me forward to refearches of ftill greater importance.

It is undoubtedly certain, that we find an infinite difference between the particles of opaque bodies, according to the variety of the bodies themfelves. Some will be more fufceptible of vibrations, and others lefs, and others finally not at all fo. This difference in bodies occurs but too evidently. One, whofe particles eafily receive the impreffion of the rays which frike it, appears to us brilliant; another, on the contrary, in which the rays fcarcely produce any agitation, cannot appear luminous. Among feveral bodies, equally illumined, you will always remark a great difference, fome being more brilliant than others. But there is befides another and a very remarkable difference between the particles of opaque bodies, refpecting the number of vibrations which each of them, being agitated, will make in a certain time.

I have already obferved, that this number muft always. be very great, and that the fubtilty of ether is fuch as to require many thoufands in a fecond. But the difference here may be endlefs; if fome particles; for example, fhould make 10,000 vibrations in a fecond, and others $11,000,12,000,13,000$, according
to the fmallnefs, the tenfion, and the elaficicity of each, as in the cafe of mufical chords, in which the number of vibrations given in, a fecond may be varied without end ; and thence it is I have deduced the difference of high and low notes. As this difference is effential in founds, and as the ear is affected by it in a manner fo particular as to render it the foundation of the whole theory of mufic, it cannot be called in queftion that a fimilar difference in the frequency of the vibrations of rays of light muft produce a variation as particular in vifion. If, for example, a particle makes 10,000 vibrations in a fecond, and produces rays of the fame fpecies, the rays which enter into the eye will ftrike the nerves of that organ ro,000 times in a fecond; and this effect, as well as the fenfation, muft be totally different from thofe produced by a different particle which fhould make more or lefs vibrations in a fecond. There will be in vifion a difference fimilar to that which the ear perceives on hearing fharp or flat notes.

You will no doubt be defirous to know into what this difference in vifion is to be refolved; and what different fenfations correfpond to the number, greater or lefs, of the vibrations produced in every body during a fecond? I have the honour of informing you, That diverfity of colours is occafioned by this difference; and that difference of colour is to the organ of vifion what fharp or flat founds are to the ear. We have refolved, therefore, without going after it, the important enquiry refpecting the nature of colours, which has long employed the attention of the
greateft philofophers. Some of them have called it a modification of light abfolutely unknown to us. Defcartes maintains, that colours are only a certain mixture of light and fhade. Nerwton accounts for difference of colour by tracing it up to the rays of the fun; which, according to him, are a real emanation, whofe matter may be more or lefs fubtile; and thence fettles the rays of all the colours, as red, yellow, green, blue, violet, \&c.

But as this fyftem falls to pieces of itfelf, all that has been faid refpecting colours conveys no information; and you are now clearly fenfible, that the nature of each colour confifts in the number of vibrations produced in a certain time by the particles which prefent them to the eye.

12th fuly, 1760.

LETTER XXXVIII.
Nature of Colours in particular.

THE ignorance which prevailed refpecting the true nature of colours, has occafioned frequent and violent difputes among philofophers ; each of whom made an attempt to fhine, by maintaining a peculiar opinion on the fubject. The fyftem which made colours to refide in the bodies themfelves, appeared to them too vulgar and too little worthy of a philofopher, who ought always to foar above the multitude. Becaufe the clown imagines that one
body is red, another blue, and another green, the philofopher could not diftinguifh himfelf better than by maintaining the contrary; and he accordingly affirms that there is nothing real in colours, and that there is nothing in bodies relative to them.

The Newtonians make colours to confift in rays only; which they diftinguifh into red, yellow, green, blue, and violet; and they tell us that a body appears of fuch and fuch a colour when it reflects rays of that fpecies. Others, to whom this opinion feemed abfurd, pretend that colours exift only in ourfelves. This is an admirable way to conceal ignorance; the vulgar might otherwife believe that the fcholar was not better acquainted with the nature of colours than themfelves. But you will readily perceive that thefe affected refinements are mere cavil. Every fimple colour (in order to diftinguifh from compound colours) depends on a certain number of vibrations, which are performed in a certain time; fo that this number of vibrations, made in a fecond, determines the red colour, another the yellow, another the grean, another the blue, and another the violet, which are the fimple colours reprefented to us in the rainbow.

If, then, the particles of the furface of certain bodies are difpofed in fuch a manner, that being agitated, they make in a fecond as many vibrations as are neceffary to produce, for example, the red colour, I call fuch a body red, juft as the clown does; and I fee nothing like a reafon for deviating from the common mode of expreflion. And rars which
make fuch a number of vibrations in a fecond, may, with equal propriety be denominated red rays; and finally, when the optic nerve is affected by thefe fame rays, and receives from them a number of impulfions, fenfibly equal, in a fecond, we receive the fenfation of the red colour. Here every thing is clear; and I fee no neceffity for introducing dark and myfterious phrafes, which really mean nothing.

The parallel between found and light is fo perfect, that it hits even in the minuteft circumftances. When I produced the phenomenon of a mufical chord, which may be excited into vibration by the refonance only of certain founds, you will pleafe to recollect, that the one which gives the unifon of the chord in queftion is the moft proper to fhake it, and that other founds affect it only in proportion as they are in confonance with it. It is exactly the fame as to light and colours ; for the different colours correfpond to the different mufical founds.

In order to difplay this phenomenon, which completely confirms my affertion, let a dark room be provided; make a fmall aperture in one of the fhutters; before which, at fome diftance, place a body of a certain colour, fay a piece of red cloth, fo that, when it is illumined, it's rays may enter by the aperture into the darkened room. The rays thus tranfmitted into the room will be red, all other light being excluded: and if you hold on the infide of the room, oppofite to the aperture, a piece of cloth of the fame colour, it will be perfectly illumined, and its red colour appear very brilliant; but if you fub-
ftitute in it's place a piece of green cloth, it will remain obfcure, and you will hardly fee any thing of it's colour. If you place on the outfide, before the aperture, a piece of green cloth, that within the chamber will be perfectly illumined by the rays of the firft, and it's green colour appear very lively. The fame holds good as to all other colours; and I do not imagine that a more convincing demonftration of the truth of my fyitem can be demanded.

We learn from it, that, in order to illuminate a body of a certain colour, it is neceflary that the rays which fall upon it fhould have the fame colour ; thofe of a different colour not being capable of agitating the particles of that body. This is farther confirmed by a well known experiment. When the fpirit of wine is fet on fire in a room, you know that the flame of fpirit of wine is blue, that it produces only blue rays, and that every perfon in the room appears very pale, their faces, though painted ever fo deep, have the aipect of death. The reafon is evident; the blue rays, not being capable of exciting, or putting in motion the red colour of the face, you fee on it only a feeble and bluif colour: but if one of the company is dreffed in blue, fuch drefs will appear uncommonly brilliant. Now the rays of the fun, thofe of a wax taper, or of a common candle, illuminate all bodies almoft equally; from whence it is concluded, that the rays of the fun contain all colours at once, though he himfelf appears yellowifh.

In truth, when you admit into a dark room the rays of all the fimple colours, red, yellow, green, VoL. I.
blue, and violet, in nearly equal quantities, and blend them, they reprefent a whitifh colour. The fame experiment is made with various powders, coloured in like manner ; on being mixed together, a whitifh colour is the refult. Hence it is concluded that white is nothing lefs than a fimple colour ; but that it is rather a compound of all the fimple colours; accordingly we fee that white is adapted to the reception of all colours. As to black, it is not properly a colour. Every body is black when it's particles are fuch that they can receive no motion of vibration, or when it cannot produce rays. The want of rays, therefore, produces the fenfation of that colour; and the more particles there are found in any body not fufceptible of any motion of vibration on it's furface, the more blackifh and obfcure it appears.
${ }^{15}$ th $\mathfrak{F} u l y, 1760$.

LETTER XXXIX.

Tranfparency of Bodies relative to the Tranfmifion of Rays.

IHAVE already remarked, that there are bodies, fuch as glafs, water, and efpecially air, which tranfmit the rays of light, and, on account of this. property, are denominated pellucid or diaphonous. The ether, however, is the medium in which the rays of light are formed, to which this property moft intimately appertains; and other tranfparent bodies
are endowed with it only by means of the cther which they contain, and with which they are fo blended, that the agitations excited by the light may be communicated farther without being interrupted in their progrefs. But this tranfmiffion is never performed fo freely as in the pure ether, though it always lofes fomething; and this in proportion as the tranfparent body is more or lefs grofs. The groffnefs may even become fo confiderable, that the light fhall be wholly loft in it; and then the body is no longer tranfparent. Thus, though glafs be a tranfparent body, a great lump of glafs feveral feet thick is not fo. In like manner, however pure the water of a river may be, you cannot fee the bottom where it is very deep, though you can very eafily where it is fhallow.*

Tranfparency, then, is a property of bodies rela-

* The common diftinction of bodies into opaque and tranfparent is inaccurate, for every body has a certain degree of tranfparency. All fubftances abforb light in it's paffage, but in fome this abforption is prodigious, and the quantity of light which penetrates through a certain thicknefs is fo exceedingly minute as to clude our powers of perception. When the thicknefs is much diminifhed, the light becomes fenfible, even in the cafe of bodies that are ufually termed opaque; thus we can fee through a plate of ivory and a leaf of gold. The different properties of fubftances with refpect to the tranfmiffion of light, feems to depend on the greater or lefs regularity of the difpofition of their elementary particles, and on their proximity or diftance from each other; as thefe circumftances augment or diminifh the chance of a ray's paffing within the limit of abforption. Whatever be the intenfity of the incident light, the fame proportion of it is, in a given body, tranfmitted through the fame thicknefs, $-E . E$.
tive only to their thicknefs ; and when this property is afcribed to glafs, to water, \&cc. it muft always be underftood with this reftriction, that thefe bodies are not too grofs; and that to every fpecies there is a certain meafure of thicknefs beyond which the body ceafes to be tranfparent. There is not one opaque body, on the contrary, which may not itfelf become tranfparent, if reduced to a plate extremely fine. Thus, though gold is not tranfparent, gold leaf is fo; and on examining the minuter particles of all bodies with a microícrope, they are found to be tranfparent. It may then be with truth affirmed, that all bodies are tranfparent when reduced to a certain degree of finenefs; and that no one is fo when too grofs.

In common language we denominate tranfparent the bodies which preferve this quality to a certain degree of thicknefs, though they lofe it when they go beyond that bound. But with refpect to ether, it is of it's own nature perfectly tranfparent, and it's extent diminifhes not this quality in the fmalleft degree. The prodigious diftance of the fixed fars prevents not their rays from being tranfmitted to us. But though our air appears to be of a perfect tranfparency, if it extended as far as the moon, that tranfparency would be entirely loft, and would prevent every ray of the fun, and of the other heavenly bodies, from penetrating to us. We fhould then be involved in Egyptian darknefs.

The reafon of it is evident, and we remark the fame thing in found, whofe refemblance to light is
confirmed in every refpect. Air is the mot proper medium for the propagation of found ; but the agitations excited in the air are capable of fhaking alfo the particles of all bodies; and thefe again putting in motion the interior particles, finally tranfmit the vibration through the fubftance of all bodies, unlefs they be too thick. There are bodies, then, which, relatively to found, are the fame thing which tranfparent bodies are relatively to light; and all bodies have this property with relation to found, provided they are not too thick. When you are in your apartment, you can hear almof every thing that paffes in the ante-chamber, though the doors are clofely fhut, becaufe the agitation of the air in the ante-chamber communicates itfelf to the partitions, and penetrates through them into the inner apartment with fome lofs, however. Were the partition removed, you would undoubtedly hear more diftinctly. Now the thicker the walls are, the more of it's force does the found lofe in piercing through them : and the walls may be made fo thick that nothing could be heard from without, unlefs it were fome terrible noife, fuch as a difcharge of cannon.

This leads me forward to a new remark; that very powerful founds may be heard through walls which are impenetrable to founds more feeble; and, confequently, in order to form a judgment whether a wall is capable of tranfmitting founds, it is neceffary to take into the account not only the thicknefs of the wall, but likewife the ftrengh of the found. If the found is very feeble, a very thin wall is fufti-
cient to ftop it, though a louder could find an eafy tranfmiffion. The fame thing holds as to bodies which are permeable only to a very ftrong light. Objects not very brilliant are invifible through a glafs blackened with fmoke, but the rays of the fun force themfelves through it, and it tranfmits perfectly well the image of that luminary. Aftronomers employ this method to obferve him; for without fuch precaution he would dazzle the eye. And when you happen to be in a dark room, with an aperture in the fhutter expofed to the fun, in vain will you attempt to exclude the light by oppofing your hand to the aperture; the rays of the fun will force themfelves through.

It is perceivable at the fame time that the light of the fun lofes much of it's luftre in paffing through a body which, relatively to other objects, is not itfelf tranfparent. But a very ftrong light may lofe much of it's luftre, before it is entirely extinguifhed, while a feebler light is loft at once. A piece of very thick glafs, then, will not be tranfparent, with refpect to objects lefs brilliant, though the fun may be vifible through it.

Thefe remarks on tranfparent bodies lead me to the theory of refraction, of which you have frequently heard, and which I fhall endeavour to place in it's proper light.

18tb Fuly, Iy60.

LETTER XXX.

Of the Tranfmiffron of Rays of Light, though tranfparent Mediums, and their Refraction.

AS long as light moves in the fame medium, whether it be ether, air, or any other tranfparent body, the propagation proceeds in ftraight lines, denominated rays, as they proceed from the luminous point, in all directions, as the radii of a circle, or a globe, iffue from the centre. In the fyltem of emanation, the particles darted from luminous bodies move in ftraight lines; the fame thing holds, in that which I have had the honour of propofing, in which the agitations are communicated in ftraight lines, as the found of a bell is tranfmitted in a ftraight line, by which alfo we judge from what quarter the found comes ; the rays in both fyftems, then, are reprefented by ftraight lines, as long as they pafs through the fame tranfparent medium ; but they may undergo fome inflection, in paffing from one to another; and this inflection is called the refraction of the rays of light, the knowledge of which is neceflary to account for many phenomena, I proceed, therefore, to lay down the principles, in conformity to which, refraction takes place.*

* The quantity of refraction is not proportional to the denfity of the medium. Sir Ifaac Newton remarks, that inflammable fubftances, though fecificaily lighter than water, produce a much greater refraction: and it was this analogy which fuggefted to him, that diamonds belong to the fame clafs; a conjecture which has been verified within thefe few years $-E$. E.

It is an invariable law, that, when a ray, fuch as E C (plate I. fig 8.) falls perpendicularly on the furface A B of another medium, it continues it's progrefs in the fame ftraight line extended, as C F ; it will, in this cafe, undergo no inflection or refraction. If, then, E C is a ray of the fun, falling perpendicularly on the furface A B of water, or of glafs, it will enter it in the fame direction, and continues it's progrefs in the line C F, which is, likewife, perpendicular to the furface $A B$, fo that $E F$ fhall be in one and the fame ftraight line. This is the only cafe in which there is no refraction. But as often as the ray falls not perpendicularly on the furface of another tranfparent body, it does not purfue it's progrefs in the fame ftraight line; it recedes lefs or more from it, and undergoes a refraction.

Let P C (plate I. fig. g.) be a ray, falling obliquely on the furface $A B$, of another tranfparent medium. On entering into this medium, it will not continue it's progrefs in the direction of the fraight line $\mathrm{C} Q$, which is the line $\mathrm{P}^{4} \mathrm{C}$ produced; but will recede from it, in the direction of the line C R, or CS. It will undergo, then, at the point C , an inflection, which we call refraction, which depends partly on the difference of the two mediums, and partly on the obliquity of the direction of the ray PC .

In order to comprehend the laws of this inflection, it is neceffary to explain certain terms employed in treating this fubject.
ift. The furface A B, which feparates the two mediums, that from which the ray comes, and that into
which it enters, is called the refringent furface. 2dly. The ray P C, which falls upon it, is called the incident ray; and, 3 dly, the ray C R, or C S, which purfues, in the other medium, a courfe different from C Q, is called, the broken, or refracted ray. And, having drawn through the furface $\mathrm{A} B$, the perpendicular line E C F, we call, 4thly, the angle P C E, formed by the incident ray P C, with the perpendicular E C, the angle of incidence; and, 5 thly, the angle R C F, or S C F, formed by the refracted ray C R or C S, with the perpendicular C F , is called the angle of refrastion.

Therefore, becaufe of the inflection, which the ray of light undergoes, the angle of refraction is not equal to the angle of incidence P C E ; for producing the line $P C$ to Q, the angles $P C E$ and $F C Q$ being vertical, are equal to each other ;* as you will eafily recollect. The angle Q C F, then, is equal to the angle of incidence P C E ; therefore, the angle of refraction R C F or S C F, is greater or lefs: There are, then, only two cafes which can exift ; the one, in which the refracted ray being $C R$, the angle of refraction R C F , is lefs than the angle of incidence PCE; and the other, in which the refracted ray being C S, the angle of refraction is greater than the angle of incidence P C E. In the former care, we fay, that the ray $C R$ approaches the perpendicular CF ; and in the other, that the refracted ray C S, recedes or deviates from the perpendicular.

It is necefiary, then, to enquire, In what cafes the

[^19]one or the other of thefe changes will take place? And we fhall find, that this phenomenon depends on the difference of the denfity of the two mediums; or becaufe the rays are tranfmitted with more or lefs difficulty through each of them. To prove this, it muft be recollected, that ether is of all mediums the moft rare, and that through which rays are tranfmitted, without the flighteft refiffance. After it, the other common tranfparent mediums are thus arranged: air, water, glafs; thus glafs is a medium more denfe than water; water than air; and air than ether.

This being laid down, we have only to attend to thefe two general rules: ift. When rays pafs from a medium lefs denfe into one which is more fo, the refracted ray approaches the more to the perpendicular. This is the cafe, in which the incident ray being P C, the refracted ray is C R. 2dly. When the rays pafs from a medium more denfe to one lefs fo, the refracted ray recedes from the perpendicular, This is the cafe, in which the incident ray being P C, the refracted ray is C S. Now, this inflection is greater or lefs, according as the two mediums differ in refpect of denfity. Thus, rays, in paffing from air into glafs, undergo a greater refraction, than when they pafs from air into water; in both cafes, however, the refracted rays approach the perpendicular. In like manner, rays paffing from glafs into air, undergo a greater refraction than when they pafs from water into air ; but in thefe cafes, the refracted ray recedes from the perpendicular.

Finally,

Finally, it muft likewife be remarked, that the difference between the angle of incidence and the angle of refraction is fo much greater, as the angle of incidence is greater, or, as the incident ray recedes farther from the perpendicular, the greater will be the inflection or refraction of the ray. A relation of all thefe angles exifts, and is determinable by geometry; but it is not now neceffary to enter into the detail. What has been already faid, is fufficient for underftanding what I have farther to propofe on the fubject.

22d July, I 760.

LETTER XXXI.

Refraction of Rays of different Colours.

YOU have feen, that when a ray of light paffes obliquely from one tranfparent medium to another, it undergoes an inflection, which is called refraction, and that the refraction depends on the obliquity of the incidence, and the denfity of the mediums. I muft now call upon you to remark, That diverfity of colours occafions, likewife, a fmall variety in the refraction. This arifes, undoubtedly, from hence, that the rays which excite in us the fenfations of different colours, perform unequal numbers of vibrations in the fame times, and that they differ among themfelves, in the fame manner as fharper or flatter founds do. Thus, it is obfervable,
that rays of red undergo the leaft inflection or refraction; after them come the orange; the yellow, the green, the blue and the violet, follow in order; fo that violet-coloured rays undergo the greateft refraction ; it being always underfood, that the obliquity of the incidence, and the denfity of the mediums are the fame. Hence, it is concluded, that rays of different colours have not the fame refrangibility; that the red are the leaft refrangible, and the violet-coloured the moft fo.

If then, P C (plate I. for. ro.) is a ray pafling, for example, from air into glafs; the angle of incidence being P C E, the refracted ray will approach the perpendicular C F; and if the ray be red, the refracted ray will be in the direction C -red; if it be orange, the refracted ray will be C-orange, and fo of the reft, as may be feen in the figure. All thefe rays deviate from the line C Q, which is P C produced, toward the perpendicular $\mathrm{C} F$; but the red ray deviates the leaft from $C Q$, or undergoes the leaft inflection, and the violet recedes the fartheft from $\mathbf{C} Q$, and undergoes the greateft inflection.

Now, if PC is a ray of the fun, it produces, at once, all the coloured rays indicated in the figure; and if a piece of white paper is placed to receive them, you will, in effect, fee all thefe colours; hence, it is affirmed, that every ray of the fun contains, at once, all the fimple colours. The fame thing happens, if PC is a ray of white, or if it proceeds from a white body. We fee all the colours produced from it by refraction, whence it is concluded, that
that white is an affemblage of. all the fimple colours, as we fhewed formerly. In truth, we have only to collect all thefe coloured rays into a fingle point, and the colour of white will be the refult.

It is thus we difcover what are the fimple colours. Refraction determines them inconteftibly. In following the order which it prefents, they are thefe : 1. red, 2. orange, 3 . yellow, 4 . green, 5.blue, 6. violet. But it muft not be imagined, that there are but fix: for as difference of colours arifes from the number of vibrations which rays perform in one and the fame time, or rather the undulations which produce them : it is clear, that the intermediate num. bers equally give fimple colours.* But we want names, by which to defign thefe colours; for be-

* This remark, that the number of primitive colours much exceeds fix, is very juft. The colours of the rainbow, or of the fpectrum, formed by a prifm, pafs into each other by infenfible fhades, fo that it is impoffible to define their boundaries. There is reafon to fufpect, that, even the great Newton was, in this inftance, minfed, by a predilection for the number feven, which during many ages, has been regarded with a fort of myftical veneration. The correfpondence, which he obferved, between the divifions of the fpectrum, and thofe of the monochord, and which fo many authors have fince repeated, is wholly ideal ; for the proportions, between the extent of the different colours are, in a great. meafure, determined by the peculiar quality of the refracting mediums. Thus a prifm of glafs, in which alkali predominates, forms a fpectrum, extremely unlike that formed by one of glafs, compofed principally of lead. Were a perfon to reckon only the moft confpicuous of the primitive colours, he would, moft probably, feleet the number fix, for the indigo can hardly be diftinguighed. $-E$. E.
tween yellow and green, we evidently perceive in* termediate colours, for which we have no feparate names.
In conformity to the fame laws, are produced the colours vifible in the rainbow. The rays of the fun, in paffing through the drops of water which float through the air, are, by them, reflected and refracted, and the refraction decompounds them into the fimple colours. You muft, undoubtedly, have remarked, that thefe colours follow each other, in the fame or der, in the rainbow, the red, orange, yellow, green, blue, and violet; but we difcover in it, alfo, all the intermediate colours, as fhades of one colour to another, and had we more names to diftinguifh thefe degrees, we might find more of them from the one extremity to the other. A more copious language may, perhaps, enable another nation actually to reckon up a greater number of different colours; and another, it may be, cannot reckon up fo many; if, for example, it wants a term to exprefs what we call orange. Some to thefe add purple, which we perceive at the extremity of the red, but which others comprehend under the fame name with red.

Thefe colours may be compared to the notes of an octave, as I have done here, becaufe the relations
of colours, as well as thofe of founds, may be expreffed by numbers. There is even an appearance, that by ftraining the violet a little more, you may come round to a new purple, juft as in rifing from found to found, on going beyond B, you come round to c, which is the octave above C. And, as in mufic, we give to thefe two notes the fame name, becaufe of their refemblance, the fame thing takes place in colours, which, after having rifen through the intervals of an octave, refume the fame names: or, if you will, two colours, like two founds, in which the number of vibrations in the one, is precifely the double of the other, pafs for the fame, and bear the fame name.

On this principle it was, that father Cafel, in France, contrived a fpecies of mufic of colours. He conftructed a harpfichord, of which every key difplayed a fubftance of a certain colour, and he pretended, that this harpfichord, if fkilfully touched, would prefent a moft agreeable fpectacle to the eye. He gave it the name of the ocular harpfichord, and you muft, undoubtedly, have heard it talked of. For my part, painting rather feems to be that to the eye, which mufic is to the ear ; and I greatly doubt, whether the reprefentation of feveral fhreds of cloth, of different colours, could be very agreeable.

[^20]
LETTER XXXII.

Of the Azure-colour of the Heavens.

YOU have juft feen, that the caufe of the vifibility of objects, is a motion of vibration extremely rapid, by which the minuter particles of their furfaces are agitated, and that the frequency of thefe vibrations determines the colour.

It is the fame thing, whether thefe particles be agitated by an intrinfic force, as in luminous bodies, or whether they receive their agitation from illumination, or from foreign rays, by which they are illumined, as in opaque bodies. The frequency or ram pidity of the vibrations depends on the groffnefs of thefe particles, and on their elafticity, as that of the vibrations of a mufical ftring depends on it's thicknefs, and degree of tenfion ; thus, as long as the particles of a body preferve the fame elafticity, they reprefent the fame colour ; as the leaves of a plant preferve a green colour, as long as they are frefh; but when they begin to dry, the difference of elafticity, which then takes place, produces, likewife, a different colour. This' fubject I have already difcuffed. I now proceed to explain, Why the heavens appear to us of a blue colour in the day-time.

On obferving this phenomenon with a vulgar eye, it would appeair, that we are furrounded by a prodigious vault of azure, as painters reprefent the fky on a ceiling. I have no occafion to undeceive you refpecting
refpecting this prejudice : a fmall degree of reflection is fufficient to make you comprehend, that the heavens are not an azure vault to which the fars are affixed, like fo many luminous ftuds. You are perfectly convinced, that the ftars are imménfe bodies, at inconceiveable diftances from us, and which move freely through a fpace almoft void, or which is filled only by that fubtile matter called ether. And I will fhew you, that this phenomenon is to be afcribed to our atmofphere, which is not perfectly tranfparent.

Were it poffible to rife higher and higher above the furface of the earth, the air would become gradually more and more rare, till it ceafed to affift refpiration ; and would, at length, entirely ceafe; we fhould then have reached the region of pure ether. Accordingly, in proportion as we afcend on mountains, the mercury in the barometer continues to fall, becaufe the atmofphere becomes lighter and lighter : and then, likewife, it is remarked, that the azure colour of the heavens becomes fainter; and were it poffible to mount into pure ether, it would entirely difappear ; on looking upward, we fhould fee nothing at all, and the heavens would appear black as night; for where no ray of light can reach us, every thing wears the appearance of black.

There is good reafon, then, for afking, Why the heavens appear to be blue? This phenomenon could not exift, were air a perfectly tranfparent medium, as ether is: in that cafe, we fhould receive from above no other rays but thofe of the ftars: but the luftre of day-light is fo great, that the feeble light

VoL. I.
K
of the fars is abforbed by it. You could not perceive the flame of a taper in the day-time, at any confiderable diftance; but that fame flame, in the night, would appear very brilliant at much greater diftances. This clearly proves, that we muft look for the caufe of the azure-colour of the heavens, in the want of tranfparency in the air. The air is loaded with a great quantity of fmall particles, which are not perfectly tranfparent, but which, being illuminated by the rays of the fun, receive from them a motion of vibration, which produces new rays proper to thefe particles; or elfe they are opaque, and become vifible to us from being illumined.

Now, the colour of thefe particles is blue; and this explains the phenomenon : the air contains a great quantity of fmall blue particles : or it may be faid, that it's minuter particles are bluifh, but of a colour extremely delicate, and which becomes fenfible to us only in an enormous mafs of air. 'Thus, in a room, we perceive nothing of this blue; but when the bluifh rays of the whole atmofphere penetrate our eyes at once, however delicate the eolour of each fingly, their totality may produce a very deep colour.

This is confirmed by another phenomenon, with which you muft be well acquainted. If you look at a foreft, from a moderate diftance, it appears quite green ; but in proportion as your diftance increafes, it acquires a bluifh caft, and this gradually becomes deeper and deeper. The forefts on the mountains of Hartz, which may be feen from Magdeburg, appear
thence
thence to be blue, but viewed from Halberftadt, they are green. The great extent of air between Magdeburg and thefe mountains, is the reafon of it. However delicate or rare the bluifh particles of the air may be, there is fuch a prodigious quantity of them in that interval, the rays of which enter into the eye at once, that they reprefent a tolerable deep blue.*

* This explanation of the bluenefs of the fky is ftrained and unfatisfactory. The air is, like water, perfectly colourlefs, otherwife any portion of it might be diftinguihed by the fight. Befides, the bluenefs of the fky , even in clear weather, is not uniformly the fame, but acquires different degrees of intenfity, and different fhades, from a variety of circumftances, the climate, the featon, and the elevation of the place. The true explanation of the phenomenon muit be fought from other principles. 'The moft refrangible rays are, at minute diftances, attracted or repelled, by colourlefs fubftances, with the greateft force. A funbeam, therefore, in it's paffage through the atmofphere, will firft lofe it's violet rays moft profufely, next the indigo, then the blue, and if the track be of fufficient length, perhaps a few of the green. The rays, thus feparated, are either abforbed by the air, or they are reflected, and caufe the blue appearance. Hence, on the fummits of lofty mountains, the colour of the heavens feems faint and dark, and inclined fomewhat to violet. On the contrary, in denfe humid air, the colour is a light milky blue. Hence, alfo, the bright azure which paints the fiky of the fouthern regions, owing to the drynefs of the air, and the fhortnefs of the light's tract. For the fame reafon, not only the quantity, but even the quality, of the light which we receive from the fun, depends on his altitude. At rifing, and fetting, thofe rays which reach the furface, and even the lower range of clouds, are chiefly the reddifh; at a greater elevation of the fun, the prevailing colour of his beams is fomewhat orange; and when ftill higher, it is a dilute yellow.

The fame principles will account for the colous of the ocean, K 2
which

We remark a fimilar phenomenon in a fog, when the air is loaded with a great quantity of opaque particles of a whitifh colour. On looking to only a fmall diftance, you fcarcely perceive the fog; but when the diftance is confiderable, the whitifh colour becomes very perceptible; to fuch a degree, that it is impoffible to fee through it. The water of the fea appears green at a certain depth; but when you take up a finall quantity, as much, for inflance, as a glafs will contain, it is fufficiently diaphonous, and has no fenfible colour : but in a great extent, when you look toward the bottom, fo many greenifh rays collećted produce a deep colour.

$$
27 t b \mathcal{F}^{2} l y, 1760 .
$$

which is dark bluc. It is only in feas, not exceeding one hundred filthoms in depth, that the reflection from the white botton dilutes the proper colour, and forms a glaucous hue. This appearance is an invariable fign of the fhallownefs of the water, which is often a token of the proximity of the land. Dr. Hally relates an obfervation that he made in a diving-bell, which confirms thefe reafonings; after defcending to a great depth in the fea, he ftretched out his hand, on which the fun fhone through tife water, and painted a beautiful crimfon. The fame obfervation may be extencied, even to fubftances that are reckoned opaque. Hold an ivory knife in the focus of a burning glafs, perpendicular the pencil of light, and a bright yellowifh fpot will be perceived on the back. Incline the knife gradually, and the colour of the fpot will pafs through all the intermediate fhades, and terminate in a fine red. It is fcarce neceffary to remark, that this experiment muft be performed expeditioufly, left the ivory be fcorched.-E.E.

LETTER XXXIII.

Of Rays ifluing from a diftant luminous Point, and of the vifual Angle.

AS long as the rays produced by the rapid vibration of the minuter particles of a body, move in the fame tranfparent medium, they preferve the fame direction, or diffufe themfelves in all directions, in ftraight lines. Thefe rays may be reprefented by the radii of a circle, or rather of a fphere, which, iffuing from a centre, proceed in ftraight lines to the circumference; and it is on account of this refemblance, that we employ the fame term radius, or ray, to expreis them, though, properly fpeaking, the light does not confift of lines, but of very rapid vibrations, going continually forward, in the direction of ftraight lines: and, for this reafon, light may be confidered as ftraight lines, iffuing from a luminous point, in all directions.
Let C (plate I. fig. I I.) be a luminous point, from which rays iffue in all directions. Let two fpheres be defcribed round C , as a centre, of the one of which, let the great circle be $a b d e$, and of the other ABDE . The light diffufed over the furface of the fmaller fphere $a b d e$, will likewife occupy that of the greater fphere ABDE. The light, then, muft be more faint and weak at the furface of this laft, than on that of the fmaller fphere $a b d e$. Hence it may be concluded, that the effect of light muft be finaller,
in proportion to the diftance from the luminous point. If we fuppofe, that the radius of the greater fphere is double that of the fmaller, the furface of the greater fphere will be four times as great. Since, therefore, the fame quantity of light is diffufed over the furface of the greater fphere, and over that of the fmaller, it muft follow, that light, at double the diftance, is four times more faint; at thrice the diftance, nine times; at a quadruple diftance, fixteen times; and fo on.*

On applying this rule to the light of the fun, it will appear, that if the earth were removed to double the diftance from the fun, the light derived from him would be rendered four times more faint; and if the fun were a hundred times farther from us, his brightnefs would be a hundred times a hundred, that is, ten thoufand times lefs. Suppofing, then, a fixed ftar to be as great, and as luminous as the fun, but that it was 400,000 times farther from us, it's light will be 400,000 times 400,000 , that is, $160,000,000,000$ times more faint than that of the fun. Hence we fee, that the light of a fixed ftar is nothing, compared to that of the fun; and this is the reafon that we do not fee the fars in the day time; a feebler light

[^21]always difappears in prefence of one much more bright. The fame thing holds good with refpect to candles, and all other luminous badies, which adminifter lefs light, in proportion to their diftance from us; and you muft have frequently remarked, that however ftrong a light may be, it is infufficient to aflift us in reading a printed book, if you remove from it to any confiderable diftance.

There is fill another circumftance, clofely connected with what I have juft obferved; namely, that the fame object appears fmaller to us, in proportion to it's diftance. A giant, at a great diffance, does not appear taller than a dwarf near us. To form a clearer judgment of this, it is neceffary to attend to the angles at which thefe objects are feen by us.

Let us fuppofe, then, (plate I. fig. 12,) A B to be an object, fay a man, and that the eye looks at it from the point C . Draw from that point the ftraight lines, A C and BC, which reprefent the extreme rays proceeding from the object to the eye; we call the angle formed at C , the vifual angle of that object for the point C. If we look at the fame object from a fmaller diftance, at D, the vifual angle D will be, undoubtedly, greater: hence it is clear, that the more diffant the fame object is, the fmaller is it's vifual angle ; and the nearer it approaches, it's vifual angle becomes greater.

Aftronomers meafure very accurately the angles under which we fee the heavenly bodies, and they have found, that the vifual angle of the fun is fomewhat more than half a degree. If the fun were
twice farther from us, this angle would be reduced to the half; and then it will not feem furprizing that it fhould furnifh us four times lefs light. And if the fun were 400 times farther off, his vifual angle would become fo many times lefs, and then that lu, minary would appear no greater than a ftar. We muft, therefore, carefully diftinguifh the apparent greatnefs of any object from itt's real greatnefs. The firft is always an angle greater or lefs, according as the object is nearer or more diftant. Thus the apparent greatnefs of the fun, is an angle of about half a degree, whereas his real magnitude far furpaffes that of the earth; for the fun being a globe, his diameter is eftimated to be 172,000 German miles,* while the diameter of the earth is only 172 o \dagger miles. \ddagger
29th Fuly $^{2} 1 ; 60$.

* 790,000 miles Englifh. $\quad \dagger 7,920$ miles Englifh.
\ddagger Aftronomers likewife call the apparent diameter of a far the angle under which it is feen. Thus, they fay, that the mean diameter of the fun is $31^{\prime} 58^{\prime \prime}$; that of the earth, viewed from the fun, would be $17^{\prime \prime}$. Hence it follows, that the diameter of the earth being 2865 leagues, that of the fun is 323,000 leagues. The German inile contains 4000 fathoms, or 24,000 feet. The league of France contains 2282 fathoms. Hence it is eafy to reduce the one meafurement into the other. $-F$. E.

LETTER XXXIV.

Of the Supplement wbich Judgment lends to Vifion.

WHAT I have now fubmitted to you on the phenomenon of vifion, belongs to optics, which is a branch of mixed mathematics, and which, likewife, holds a confiderable rank in phyfics. Befide colours, the nature of which I have endeavoured to explain, it is the bufinefs of optics to treat of the manner in which vifion acts, and of the different angles under which objects are feen.

You muft have already remarked, that the fame object may bee viewed, fometimes under a greater vifual angle, fometimes under a fmaller, as it is lefs or more diftant from us. I fay farther, That a fmall object may be viewed under the fame angle as a great one, when the former is very near, and the latter very diftant. A fmall difh may be placed before the eye in fuch a manner, as to cover the whole body of the fun; and, in effect, a plate of half a foot diameter, at the diftance of 54 feet, exactly covers the fun, and is feen under the fame angle : and yet what a prodigious difference between the fize of a plate and that of the fun: The full moon appears to us under nearly the fame vifual angle as the fun, and, of confequence, nearly as great, though in reality much finaller; but it is-to be confidered, that the fun is almoft 400 times more remote from us than the moons

The vifual angle is a point of fo much the more importance in optics, that the images of the objects, which paint themfelves on the bottom of the eye, depend upon it. The greater or lefs the vifual angle is, the greater or lefs they (the objects) are great or little. And as we fee objects out of ourfelves, only fo far as their images are painted on the bottom of the eye, they conftitute the immediate object of vifion or fenfation. One of thefe images, therefore, leads us to the knowledge only of three things. Firft, it's figure and it's colours conduct to the conclufion, That there is, out of us, a fimilar object, of fuch a figure, and fuch a colour. Secondly, it's magnitude difcovers the vifual angle under which the object appears to us: and, finally, it's place on the bottom of the eye makes us fenfible of the direction of the external objeci, relatively to us, or that in which the rays emitted from it reach our eyes.

In thefe three particulars confifts the phenomenon of vifion; and we only perceive, ift, the figure and colours; 2dly, the vifual angle, or the apparent magnitude; and, 3 dly, the direction; or the place in which we conclude that the object exifts. Vifion, then, difcovers to us nothing refpecting either the real magnitude of objects, or their diftances. Though we frequently imagine, that we can determine by the eye the magnitude and diftance of an object, this is not an act of vifion, but of the underffanding. The other fenfes, and habits of long ftanding, enable us to calculate at what diftance an object is from us. But this faculty extends only to objects at no great
difance. Whenever their diftance becomes confiderable, our judgment cannot exercife itfelf with certainty; and if fometimes we venture to hazard a decifion, it is generally very remote from the truth.

Thus, no one can pretend to fay that he fees the magnitude or the diftance of the moon; and when the vulgar imagine they can judge of the firft, by confidering it as equal to that of the terreftrial bodies which are feen under the fame angle, it is not by vifion they are deceived, but by their judgment, which they want to apply to an object far beyond their reach. It is certain, therefore, that the eyes alone can determine nothing refpecting the diftance and magnitude of objects.

To this fubject may be referred the very remarkable cafe of a man born blind, who obtained fight, by means of an operation, at an advanced period of life:* This perfon was at firft dazzled: he could diftinguifh nothing as to the magnitude and diftance of objects. Every thing appeared fo near, that he wanted to handle them. A confiderable time, and long practice, were requifite to bring him to the reel ufe of fight. He was under the necefity of ferving a long apprenticefhip, fuch as we perform during the term of childhood, and of which we afterwards preferve no recollection.

This it is which inftructed us, that an object appears to us fo much the more clear and diftinct as it

[^22]is nearer ; and reciprocally, that an object which appears clear and diftinct is near ; and when it appears obfcure and indiftinct, that it is at a diftance. It is thus that painters, by weakening the tints of the objects which they wifh to appear remote, and ftrengthening thofe which they would reprefent as nearer, are enabled to determine our judgment, conformably to the effect which they mean to produce. And they fucceed fo perfectly, that we confider fome of the objects reprefented in painting as more diftant than others: an illufion which could not take place, if vifion difcovered to us the real diftance and magnitude of objects.
1f A Auguf, 1760 .

LETTER XXXV.

Explanation of certain Pbenomena relative to Optics.

YOU have juft feen, that vifion alone difcovers to us nothing, refpecting either the real magnitude or the diftance of objects; and that all we imagine we fee, whether as to the diftance or magnitude of any object, is the effect of judgment. We muft carefully diftinguifh that which the fenfes reprefent to us, from what judgment adds, in which we frequently deceive ourfelves. Many philofophers, who have declaimed againft the accuracy of the fenfes, and who meant thence to infer the uncer-
tainty of all human knowledge,* have confounded the proper reprefentations of our fenfes with judgment.

This is their mode of reafoning: We fee the fun no bigger than a trencher, though it be infinitcly greater ; "therefore the fenfe of feeing deceives us; therefore all our fenfes deceive us; at leaft, we cannot depend on them : therefore, all the knowledge we acquire by means of the fenfes, is uncertain, and probably falfe : We, therefore, know nothing. Such is the reafoning of thefe fceptics, who boaft, fo vain glorioufly, of their ingenuity; though there be nothing fo eafy as to fay, that every thing is uncertain ; and the greateft dunce may make a fhining figure in this fublime philofophy. But it is abfolutely falfe, that the fight reprefents to us the fun no bigger than a pewter plate; it determines nothing whatever refpecting his magnitude; it is our judgment alone that deceives us. When the objects, however, are not very diftant we can pronounce with tolerable exactnefs on their dimenfions and diftances; and the other fenfes, joined to the degree of clearnefs with which we fee thefe fame objects, render our judgments fufficiently certain. Now, as foon as we have the ide of the diftance of an object, we form to ourfelves, likewife; that of it's real magnitude, knowing that it depends on that diffance.

[^23]Hence, the more diftant we reckon an object to be, the greater we conclude is it's magnitude ; and reciprocally, the nearer we conclude it is, the fmaller we fuppofe it. We, of courfe, frequently take one body for another of much greater magnitude, when a fufpenfion of judgment prevents our taking diftance into the account. The reafon is that a very large body may be feen at a great diftance, under the fame angle as a finall object placed near us.

There is another phenomenon, well known to every one, and which has given occafion to many difputes among the learned, and which it is now perfectly eafy to explain. The full moon appears to every eye at the time of her rifing to be much greater than when fhe has got to a confiderable height above the horizon, though the vifual angle of the apparent magnitude be the fame. The fun, too, at the time of rifing and fetting, appears to every one greater than at noon. What then is the foundation of this judgment, fo univerfal, and fo falfe? It is undoubtedly becaufe we judge the fun and the moon in the horizon to be at a greater diftance from us than when they have got to a confiderable height.

But how come we to form fuch a judgment? The common anfwer is, that when the fun and the moon are in the horizon, we perceive a great many objects between them and us which feem to increafe their diftance; whereas when the fun and moon have rifen to a great height, we perceive nothing between them and us, and therefore conclude that they dre
nearer. I know not whether this explanation will be fatisfactory. It may be objected that an empty apartment appears greater than one completely furnifhed, though the fize be exactly the fame ; feveral intervening objects, therefore, dó not always lead us to imagine that one more remote is at a greater diftance than is really the cafe. I flatter myfelf that the following folution will be deemed more natural, and better founded.

Let the circle A (plate I. fig. I3.) reprefent the earth, and the dotted circle the atmofphere, or air with which the earth is furrounded; fuppofe yourfelf ftationed at the point A, if the moon is in the horizon, the rays will reach you in the direction of the line $\mathbf{B} \cdot \mathrm{A}$; but in her extreme height, the rays will defcend in the line $\mathrm{C} A$. In the firft cafe the rays pafs through the greater fpace BA ; and in the fecond cafe through the fmaller fpace C A. Now, you will pleafe to recollect, that the rays of light which pafs through a traufparent medium have their force diminifhed in proportion to the length of the paffage. The atmofphere or air, then, being a tranfparent medium, the ray B A muft in it's paffage lofe much more of it's force than the ray C A. Hence it follows, in general, that all the celeftial bodies appear much lets brilliant in the horizon than when fully rifen and elevated. We are able to look directly even at the fun, when he is in the horizon; but when once he has gained a certain height, the eye is conftrained to fhrink from his luftre.

I conclude from this that the moon, too, appears
lefs brilliant in the horizon than when elevated.* Now, you will recollect what I faid a little above, in fpeaking of effect in painting, that the fame object
appears

* This explanation of the appearance of the horizontal moon was offered, in the beginning of the prefent century, by, the acute Dr. Berkeley, Bifhop of Cloyne. It has fince been refuted by that excellent optician, Dr. Smith, who was the firft that completely inveftigated this curious fubject. The following is an abftract of the theory, from Dr. Priefley's "Hiftory of Vifion, Light, and Colours."
"If the furface of the earth were perfecily plane," fays Dr. Smith, " the diftance of the vifible horizon would fcarce exceed 5000 times the height of the eye above the ground, or the diftance: of miles (fuppofing the height of the eye to be between five and: fix feet) and all objects placed beyond that diftance would appear in the vifible horizon. All objects and clouds, likewife, placed at any diftance beyond this, muft confequently, if they be vifible at all, appear to be in the horizon. " Hence," he fays, " if we fuppofe a vaft wall to be built at the extremity of the plane, beyond the point of vifible diftance, it will not appear ftraight, butcircular, as if built upon the circumference of the horizon; and, if continued infinitely, would make a perfect femi-circle. If now chis round plane, with the wall upon it, be imagined to be raifed, till it come perpendicular to the reft of the plane, on which a perfon ftands, the wall will appear like the concave figure of the clouds over his head. But though the wall in the horizon appear in the fhape of a femi-circle, yet the cieling will not, but much flatter; becaufe the horizontal plane was a vifible furface, which fuggefted the idea of the fame diftances quite round the eye; but in the vertical plane, extended between the eye and the cieling, there is nothing that affects the fente with an idea of it's parts. Confequently the apparerit diftances of the higher parts of the cieling will be gradually diminifhed. Now, when the fky is quite overcaft with clouds of equal gravities, they will all float in the air at equal heights above the earth, and confequently will com-
appears to us more diffant when it's light is weakened: the moon, then, being in the horizon, muft appear more diftant than at any point of elevation.
pofe a furface refembling a large cieling, as flat as the vifible furface of the earth. It's concavity, therefore, is not real, but apparent; and when the heights of the clouds are unequal, fince their real fhapes and magnitudes are all unknown, the eye can feldon diftinguifh the unequal diftances of thofe clouds which appear in the fame directions, unlefs when they are very near us, or are driven by contrary currents of the air. So that the vifible thape of the whole furface remains alike in both cafes. And when the fky is either partly overcaft, or perfectly free from clouds, it is a fact that we fill retain much the fame idea of it's concavity, as when it was quite overcaft. But if any one thinks that the reflexion of light from the air is alone fufficient to fuggeft that idea, he would not difpute it."
"The concavity of the heavens appears to the eye, which is the only judge of an apparent figure, to be a lefs portion of a fphe-rical furface than an hemifphere. In other words," he fays, "the center of the concavity is much below the eye; and, by taking a medium among feveral obfervations, he found the apparent diftance of it's parts, at the horizon, was generally between three and four times greater than the apparent diftance of it's parts over head."
"This he determined by meafuring the actual height of fome of the heavenly bodies, when, to his cye, they feemed to be half way between the horizon and the zenith. In this cafe their real altitude was only 23 degrees."

Upon thefe principles Dr. Smith conftructed the following table:

Sun or Moon's altitude, in degrees. 00
15
30
45
60
75
30
Noi, I.

Apparent Diameters, or diftances.

The confequence is obvious; " as we judge the diftance of the moon greater in the horizon, we muft. likewife judge her magnitude greater. . And in general all the fars, when near the horizon, appear to us greater, becaufe their apparent diftance is greater. 3d Augifi, $1 ; 60$:

LETTER XXXVI.

Of Sbade.

IHAVE endeavoured to explain almoft'all that is ufually treated of in optics. All that remains is to fpeak of fhade. You already know too well what is meant by fhade to render it neceffary for me to dwell long on the fubject. Shade always fuppofes two things : a luminous body, and an opaque body, which does not tranfmit the rays of light. The opaque body, then, prevents the rays of a luminous body from getting behind it, and the face which the rays cannot reach, from this interception, is called the fhade of the opaque body, or, what comes to the fame thing, fhade includes all that fpace in which the luminous body is not to be feen, becaufe the opaque body obftructs it's rays.

Let A (plate I. fig. I4.) be a luminous point, and B C D E an opaque body. Draw the extreme rays A BM, A D N, touching the opaque body. It is evident that no ray of light proceeding from A , can penetrate into the face MBEDN ; and in what-
ever point within that face the cye may be placed, at O for example, it will not fee the luminous body. This fpace is the fhade of the opaque body, and we fee that it is continually increafing, and may extend to infinity. But if the body from which the rays proceed be itfelf of great magnitude, the determination of the fhade is fomewhat different. There are three cafes which demand confideration; the firft is, when the luminous body is lefs than the opaque; the fecond, when they are equal; and the third, when the luminous body is the greater. The firft cafe is that which we have now been confidering, in which the light is fmaller than the opaque body.

The fecond is reprefented, (plate I. fig. 15.) in which the luminous body A is of the fame magnitude with the opaque body B CE D. If you draw the extreme rays ABM, AEN, the fpace MBEN will be fhaded, and through the whole of that fpace it will be impoffible to fee the luminous body. You fce, likewife, that the lines B M and E N are parallel, and that the fhade extends to infinity, always preferving the fame breadth.

The third cafe is exhibited, (plate I. fig. 16.) in which the luminous body $\mathrm{A} A$ is greater than the opaque body B C E D. The extreme rays, touching the opaque body in B and E , if produced, will meet in the point O, and the fpace of the finade BOE becomes finite, and terminates in O . The thade, in this cafe, is termed conicai. It is only into this fpace that the light has no admiffion, and in which it is
impoffible to fee the luminous body. To this third cafe belong the finades of the celeftial bodies, which are much fmaller than the luminous body which enlightens them, namely the fun.

We have here, then, another difplay of the Creator's wifdom. For if the fun were fmaller than the planets, their fhades would not be terminated, but extend to infinity, which would deprive immenfe fpaces of the benefit of the fun's light. But the magnitude of that luminary furpaffing by fo many times that of the planets, their fhades are contracted to very narrow bounds, from which alone the light of the fun is excluded.

It is thus that the earth and the moon project their conical fhades; and the moon may occafionally plunge into the fhade of the earth either partially or totally. When this takes place, we fay the moon is eclipfed, either wholly or in part. In the former cafe we call it a total eclipfe of the moon; in the other, a partial eclipfe. The moon, likewife, projects her fhade, but it is fmaller than that of the earth. It may happen, however, that the fhade of the moon fhould extend as far as to the earth; and then thofe who are involved in that fhade, undergo an eclipfe of the fun. An eclipfe of the fun, then, takes place when the moon, interpofing, prevents our feeing the fun wholly, or in part. We fee not the fun by night, though there be no eclipfe; but we are then in the fhade of the earth, which caufes our greateft obfcurity.

Hitherto we have confidered only the cafes in which the rays of light are tranfmitted in ftraight lines, which is the profeffed object of optics. But it has been already remarked, that the rays of light are fometimes reflected, and fometimes broken, or refracted. You will recollect, that when the rays fail on a well-polifhed furface, fuch as a mirror, they are reflected from that furface; and when they pafs from one tranfparent medium to another, they undergo refraction, and are in fome fenfe broken. Hence arife two other fciences. That which confiders vifion in reference to reflected rays is called catoptrics; and that which has for it's object vifion, in reference to broken or refracted rays, is termed dioptrics, Optics treat of vifion relatively to direct rays of light. I fhall prefent you with a fummary of thefe two fciences, catoptrics and dioptrics, as they difclofe phenomena which are every day prefenting themfelves, and of which it is of importance to: inveftigate the caufes and the properties. Every thing relating to the fubject of vifion is, beyond contradiction, an object highly worthy of exciting curiofity, and of engaging attention.
$5 t b$ Auguf, 1760 .

LETTER XXXVII.

Of Catoptrics, and the Reflection of Rays from plain

> Mirrors.

CATOPTRICS treat of vifion relatively to reflected rays. When rays of light fall on a well polifhed furface, they are reflectud in fuch a mannerthat the angles on all fides are equal among themfelves.

To fet this in a clear light, let A B (plate I. fig. 17.) be the furface of a common mirror, and P a luminous point, whofe rays P Q, P M, $\mathrm{P} m$, fall upon the mirror. Of all thefe rays, let $P Q$ be that which falls perpendicularly on the mirror, and which has this particular and remarkable property, that it is reflected upon itfelf in the direction of $Q P$; juft as on a billiard table, when the ball is ftruck perpendicularly againft the ledge, it is repelled in the felf-fame direction. But every other ray, as P M, is reflected in the line MN , in fuch a manner as to make the angle A MN equal to the angle BMP; in which it is to be remarked, that the ray P M is named the incident ray, and. $\mathbf{M} \mathbf{N}$ the reflected ray. In like manner, to the incident ray $\mathrm{P} m$, will correfpond the reflected ray $m n$; and, confequently, becaufe of the reflection, the ray PM is continued in the direction of the line M N , and the ray $\mathrm{P} m$ in the direction of $m n$, fo that we have the angle $A \mathrm{M} \mathrm{N}$, equal to B MP, and the angle $A m n$, equal to the angle $B m P$.

This property is thus enounced: The angle of reflection is alroays cqual to the angle of incidence.

I have already taken notice of this ftriking property; but my defign, at prefent, is to fhew what the phenomema in vifion are which refult from it. Firft, it is evident, that an eye, placed at N , will receive from the luminous point P, the reflected ray M N ; thus the ray which excites in that eye the fenfation of the body from whence it proceeded, comes in the direction $\mathbb{M} \mathbb{N}$, juft as if the object P were in fome point of that line; hence it follows that the eye muft fee the object P in the direction N M.

In order the more clearly to elucidate this fact, we muft have recourfe to geometry ; and you will recollect with pleafure the propofitions on which the following reafoning is founded. Let the perpendicular ray $\mathrm{P} Q$ be produced on the other fide the mirror to R, fo that $Q R$ fhall be equal to $P Q$; I will fhew you that all the reflected rays, $\mathbf{M} \mathbf{N}$, and $m n$ being produced behind the mirror, muft meet in that point. For, taking the two triangles $P Q M$ and R Q M, they have firft the fide M Q.common to both; then the fide $Q R$ was made equal to the fide $P Q$; and, finally, the angle $P Q \mathrm{M}$ being a right angle, it's adjacent angle R Q M muft likewife be a right angle.* Therefore thefe two triangles, having each an equal angle contained by two equal fides; thall be every way equat, \dagger and confequently the angle

[^24]$P M Q$ equal to the angle $R M Q$. But the angle A $M N$, and the angle $R M Q$, being vertical, are equal to each other,* therefore alfo the angle A MN fnall be equal to the angle $P M Q$; that is, the angle of reflection thall be equal to the angle of incidence.

In the fame manner it is demonftrated that the reflected ray $n n$ being produced, would likewife pafs, through the point R, and confeguently produce in the eye the fame effect as if the object P were actually placed behind the mirror at R, this point being in the perpendicular $\mathrm{P} Q \mathrm{R}$, at the fame diftance as P from the furface of the mirror, but on different fides. This will enable you to comprehend clearly why mirrors reprefent objects as if they were behind them; and why we judge that there objects are placed as far behind the furface of the mirror as they really are before it. It is thus the mirror tranfports. objects into another place, without changing their appearance. To diftinguifh in the mirror that apparent object from the real, we name the apparent object the image, and we fay that the images reprefented by reflected rays are behind the mirror. This denomination ferves to diftinguifh real objects from the innages of them reprefented in mirrors; and the. images which we fee in mirrors are perfectly equal and fimilar to the objects, with this exception, that what in the object is on the left appears in the image on the right, and reciprocally. Thus a perfon wearing his fword on the left fide, appears with it in the mirror on his right.

[^25]From what has been faid, it is aiways eafy to fettle the image of any object whatever behind the mirror.

For A B (plate II. fig. 1.) being a mirror, and E F an object, fay an arrow : draw from the points E and F the perpendiculars E G and F H, to the furface of the mirror, and produce thefe to c and f, fo that E G fhall be equal to $e \mathrm{G}$, and F in to $f \mathrm{H}$, e f will be the image fought, which will be equal to the object EF , becaufe the quadrilateral figure $\mathrm{G} e f \mathrm{H}$ is in all refpects equal to the quadrilateral figure GE F H. It muft be fill farther remarked, that were you even to cut off from the mirror a part, as C B, and AC was the mirror, the image $e f$ would not be changed. And confequently when the mirror is not fufficiently large to admit the falling of the perpendiculars E G and F H upon it, we muft fuppofe the plane of the mirror to be extended, as we produce lines in geometry when we want to let fall perpendiculars upon them. What I have faid refpects only common mirrors, whofe furface is perfectly plain. Convex and concaye mirrors produce different effects:
7th Auguff, 1760 :

LETTER XXXVIII.

Reflection of Rays from convex and concave Mirrors. Burning Mirrors.

EVERY thing relating to the reflection of rays is reduced, as you have feen, to two things; the pne of which is the place of the image which the reflected rays reprefent; and the other the relation of
the image to the object. . In ordinary or plain mirrors, the image of the object is behind the mirror, at a diftance equal to that of the object before the mirror, and it is equal and fimilar to the object. To both of thefe circumfances we muft-attend when the mirror is not plain; but when it's furface is convex or concave; for in either cafe the image is, for the moft part, ftrangely disfigured. . YYou muft frequently have remiarked that on prefenting any object before a froón very highly polifhed, you fee it's image greatly disfigured, whether reflected from it's interior furface, which is concave, or from it's exterior, which is convex.

A globe of filver, finely polifhed, reprefents objects with fufficient accuracy, but in miniature. If the interior furface of the globe is well polifhed, objects appear upon it magnified ; provided always that they are not too diffant. For the fame objects may likewife appear fmaller and inverted, if they are removed far from the mirror. There is no occafion to take a whole globe; any part of it's furface whatever produces the fame effect. Thefe mirrors are denominated fipherical; and there are two forts of them. The one is conyex and the other concave, according as they are taken on the exterior or interior furface of the fiphere. They are compounded of various metals, fuíceptible of a fine polifh; whereas plain mirrors are made of a plate of glafs, and covered on one fide with a preparation of mercury, defigned to foop the paffage of the rays, and to reflect them. I begin with convex mintors.

Let A C B (plate II. fig. 2.) be a mirror, the fer. ment of a fphere, whofe centre is G . If you place before this mirror an object E, at a great diftance, it's image will appear behind the mirror, at the point D , the middle point of the radius of the fphere $\mathrm{C} \mathbf{G}$; and the magnitude of this image will be to that of the object, in the relation of the lines C D and CE: it will, therefore, be in this cafe much fmaller than the object, as the line C D is, in effect, much fmaller than the line C. E. If the object E approaches to the mirror, fo likewife will it's image. This is all demonftrable on geometrical principles, by fuppofing that any incident ray whatever, fay E M, is reflected in the direction of $M N$, fo that the angle $B M N$ may be equal to the angle CME . Thus, when the eye is at N, receiving the reflected ray $M N$, it will fee the object E , according to that direction, and will obferve it in the mirror, at the point D : or, in other words, D will be the image of the object placed at E , but finaller. It is likewife eafy to fee, that the fmaller the fphere is, of which the mirror is a fegment, the more, likewife, is the image diminifhed.

I proceed to concave mirrors, the ufe of which is very common on many occafions. Let A C B (plate II. fig. 3.) be a mirror, forming part of a fphere, whofe centre is G, and $G C$ a radius. Let us fuppofe an object E, very diftant from the mirror, it's image will appear before the mirror at D , the middle point of the radius C G: for any ray of light whatever, $E M$, from the object E, falling on the furface of the mirror, at the point M, will be reflected thence,
thence, in fuch a manner, as to pafs through the point D ; and when the eye is placed at N , it will fee the object at D ; but this image will be to the object in the ratio of $C D$ to $C E$, and confequently in this cafe fmaller than it. And when you bring the object nearer to the mirror, the image retires; the object being placed even at the centre G, the image is there likewife. If you bring the object ftill forward to D, the image will retire infinitely beyond E. But if the object be placed fill farther forward, between C and D , the image will fall behind the mirror, and appear greater than the object.

When you look at yourfelf in fuch a mirror, at fome point between D and C , your face will appear frightfully large. This is explained by the nature of reflection, in virtue of which the angle of incidence, EMA, is always equal to the angle of reflection, C M N. To this fpecies muft be referred burning mirrors, and every concave mirror may be employed to burn. This remarkable property merits a more particular explànation.

Let A B C (plate II. fig. 4.) be a concave mirror, whofe centre is G, and inftead of the object, let the fun be at E; his reflected rays will reprefent the image of the fun at D , the middle point between C and G. Now, the magnitude of this image will be, determined by the extreme rays S C, S C. This image of the fun will be, accordingly, very fmall, and as all the rays of the fun which fall on the mirror A C B are refected in this image, they will be collected there, and will have fo much more force, as
the image D is fmaller than the furface of the mirror. But the rays of the fun are endowed with the property of heating the bodies on which they fall, as well as that of illuminating them; hence it. follows, that there muft be at D a great degree of heat; and when the mirror is fufficiently large, this heat may become ftronger than the moft ardent fire. In fact, by means of fuch a mirror, you may burn in an inftant any combuftible body, and even melt metals of every kind. It is the image of the fun alone which produces thefe furprifing effects. This image is ufually denominated the focus of the mirror ; it falls always in the middle point of the radius $\mathrm{C} G$; between the mirror and it's centre G.

You muft carefully diftinguifh burning mirrors from burning glaffes, of which I fhall give fome account in my next-letter:
9 th Auguff, 1760 .

LETTER XXXIX.

Of Dioptrics.

HAVING explained the principal phenomena of catoptrics, which refult from the reflection of the rays of light; I procced to treat of dioptrics, whofe object is to unfold the phenomena of the refraction of rays, which takes place when they pafs through different tranfparent mediums. A ray of light does not purfue the fame ftraight line unlefs it
continues it's progreis through the fame medium: As foon as it enters another tranfparent medium, it changes it's direction more or lefs, according as it falls upon it more or lefs obliquely. There is only one cafe in which it purfues a rectilinear courfe, namely, when it enters the other medium perpendicularly.

The inftruments principally to be confidered in dioptrics are the glaffes employed in the conftruction of telefcopes and microfcopes. Thefe glaffes are of a circular form, but with two faces. Every thing relating to them is reducible to the figure of thefe two faces, which may be plain, or convex, or concave. Their convexity, or concavity, is always equal to that of a fphere, of which the radius muft be known, it being confidered as the meafure of the curve of thofe furfaces. This being laid down, we fhall have feveral kinds of dioptric glaffes.

The firft fpecies, No. I. (plate II. fig. 5.) is that whofe two faces are plain. By cutting a circular piece out of a plate of glafs, of equal thicknefs, we fhall have one of this fpecies, which makes no change on objects either as to magnitude or diftance. Glafs No. II. has one of its furfaces plain, and the other convex; and fuch are termed plano-convex. The third fpecies, No. III. has one face plain, and the other concave, and thefe are called plano-concave. The fourth, No. IV. has two convex furfaces, and is called double-convex. No. V. has two concave furfaces, and is called double-concave. The fpecies Nos. VI. and VII. have one furface convex and the other concave; and
we give them the name of menifous. All thefe lenfés are reducible to two claffes; the one containing thofe in which convexity prevails, as Nos. II. IV. VI. ; in the other, concavity is predominant, namely, Nos. III. V. VII. The former clafs is fimply denominated convex, and the latter concave. Thefe two claffes are difinguithed by the following properts.

Let A B (plate II. fig. 6.) be a convex glafs, expofed to a very diftant object, $\mathrm{E} F$, whofe rays $\mathrm{G} A$, G C, G B, fall on the glafs, and, paffing through it, undergo a refraction, which will take place in fuch a manner, that the rays proceeding from the point G fhall meet on the other fide of the glafs in the point g. The fame thing will happen to the rays which proceed from every point of the object. By this alteration all, the refracted rays $\mathrm{A} l, \mathrm{~B} m, \mathrm{C} n$, will puifue the fame direction as if the object were at c, g, f, and inverted; and it will appear as many times finaller as the diftance $\mathrm{C} g$ fhall be contained in the diftance C G. We fay, then, that fuch a glafs reprefents the object EF behind it at $e f$, and this reprefentation is called the image, which is confequently inverted, and is, with the object itfelf, in the ratio of the diftances of the glafs from the image, and of the glafs from the object.

It is clear, then, that if the fun were the object, the image reprefented at $e f$ would be that of the fun; though rery fmail, it will be fo brilliant, as to dazzle the eye, for all the rays which pafs through the glafs meet in this image, and there exercife their double power of giving light and heat. The heat
there is nearly as many times greater, as the furface of the glafs exceeds in magnitude the image of the fun, named it's focus, from which, if the glafs be very great, you may produce the greateft cffects of heat. Combuftible fubftances, placed in the focus of fuch a glafs, are infiantly confumed. Metals are melted, and even vitrified by it; and other effects are produced far beyond the reach of the moft active and intenfe fire.

The reafon is the fame as in the cafe of burning mirrors. In both the rays of the fun, diffufed over the whole furface of the mirror, or glafs, are collected in the finall fpace of the fun's image. The only difference is, that in mirrors the rays are collected by reflection, and in glaffes by refraction. Such is the effect of convex glafes, which are thicker in the middle than at the extremities, and which I have reprefented in Nos. II. IV. and VI. Thofe reprefented in Nos. III. V. and VII. are thicker at the extremities than at the middle, and being all comprehended under the term concave, produce a contrary effect.

Let A C B (plate II. fig. 7.) be a glafs of this form. If you expofe to it, at a great diftance, the object E G F , the rays G A, G C, G B, proceeding from the point G, will undergo a refraction, on leaving the glafs, in the direction of $\mathrm{A} I, \mathrm{C} m$, and $\mathrm{B} n$, as if they had iffued from the point g; and an eye placed behind the glafs, at m, for example, will fee the object juft as if it were placed at $e g f$, and in a fituation fimilar to that in which it is at the point G, but as many times fimaller as the diftance C G exceeds the
diftance G g. Convex glaffes, then, reprefent the image of a very diftant object behind them ; concave glaffes reprefent it before them; the former reprefent it inverted, and the latter in it's real fituation. In both, the image is as many times finaller as the diftance of the object from the glafs exceeds that of the glafs from the image. On this property of glaffes is founded the conftruction of telefcopes; fpectacles, and microfcopes.

> 1ith, Auguf, 1760 .

LETTER XL.

Continuation. Of burning Glaffes and their Focus.

CONVEX glaffes furnifh fome farther remarks, which I beg leave to lay before you. I fpeak here of thofe glaffes in general which are thicker in the middle than at the extremities; whether both furfaces be convex, or one plane and the other convex; or, finally, one concave and the other convex, provided, however, that the convexity exceed the concavity, or that the thicknefs be greater at the middle than at the extremities. It is farther fuppofed that the glaffes have a fpherical figure.

They have firft this property, that being expofed to the fun, they prefent behind them a focus, which is the image of that luminary, and which is endowed, like it, with the property of illuminating and burning. The reafon is that all the rays iffuing from
the fun, and falling on this furface, are collected by the refraction of the glafs into a fingle point. The fame thing happens whatever be the object expofed to fuch a glafs; it always prefents the image of it; which you fee inftead of the object itfelf. The following figure will render what I have faid more intelligible.

Let A.B C D (plate II. fis. 8.) be a convex glafs, before which is placed an object E G F, of which it will be fufficient to confider the three points $\mathbf{E}, \mathrm{G}, \mathrm{F}$. The rays which, from the point \boldsymbol{F}, fall upon the glafs, are contained in the fpace A E B ; and are all collected in the fpace $\mathrm{A} e \mathrm{~B}$ by refraction, fo as to meet in the point e. In the fame manner the rays from the point G, which fall on the glafs, and which fill the fpace A GB, are comprehended, by means of refraction, in the fpace $A g B$, and meet in the point g. Finally, the rays from the point F, which fall on the glafs in the angle A F B , are refracted fo as to meet in the point f. Thus we fhall have the image $e g f$ in an inverted pofition behind the glafs; and an eye placed at O , behind the image, will be affected in the fame manner as if the object were at $e g f$, inverted, and as many times fmaller as the diftance $\mathrm{D} g$ is fmaller than the diftance C G.

In order to determine the place of the image $e g f$, we muft attend as well to the form of the glafs as to the diftance of the object. As to the firft, it may be remarked, that the more convex the glafs is, in other -words, the more that the thicknefs of the middle C D exceeds that of the extremities, the nearer the
image will be to it's furface. With regard to the diftance, if you bring the object E F nearer to the glafs, it's image ef retires from it, and reciprocally. The image cannot be nearer to the glafs than when the object is at a very great diftance from it ; it is then at the fame diftance as that of the fun would be, which is denominated the focus of the lens. When the object, then, is very diftant, the image falls in the very focus, and the nearer you bring the object to the glafs the farther the image retires from it, and that in conformity to a law in dioptrics, by means of which you can always determine the place of the image, for every diftance of the object, provided you know the focus of the glafs, that is, the difance at which it collects the rays of the fun, in a fpace fufficiently fmall to fet on fire a body expofed to it.

The point where the rays meet is, as has been faid, the place of the innage. Now, this point is eafily found by experience. The different denominations of glafles are derived from it, as when we fay, fuch a glafs has it's focus at the diftance of an inch, another at the diftance of a foot, another at the diftance of ten feet, and fo on; or, more concifely, a glafs of an inch, a foot, or ten feet focus. Long telefcopes require glaffes of a very diftant focus, and it is extremely difficult to make them exact. I once paid 150 crowns for one lens, which I fent to the academy of Peterfburg; it has it's focus at the diftance of 600 feet: I am convinced it was of no great value; but they would have it on account of it's rarity.

To be fatisfied that the reprefentation of the image $e g f$, in the preceding figure, is real, you have only to hold at that place a piece of white paper, the particles of which are fufceptible of the different kindst of vibrations on which colours depend. Then all the rays from the point E of the object, on meeting at the point c, will put the particles of the paper into a movement of vibration fimilar to that which the point E has, and confequently you will fee the point e of the fame colour as the point E. In like mannet the points g and f will have the fame colours as the points G and F of the object ; and you will likewife fee on the paper all the points of the object expreffed in their natural colours; which will reprefent the moft exact and the moft beautiful picture of the object. This will fucceed perfectly well in a dark room by applying a convex lens to a hole made in the fhutter. You will then fee on a fheet of white paper, placed oppofite to the aperture in the fhutter, all the external objects fo exactly painted, that you may trace them with a pencil. Painters make ufe of fuch 2 machine for defigning landfcapes and other views..* ${ }_{1}{ }^{2} t h$ Auguff, 1760 .

* The hypothefis of light, contained in the preceding letters, was firft propofed in the middle of laft century by the ingenious Mr. Huggens; but after the brilliant difcoveries of Sir Ifaac Newton, it fell into oblivion, where it ought ever to have remained. What induced Mr. Euler to revive it, it is difficult to conceive. This hypothefis is not likely to have many abettors in the prefent age. As it appeals wholly to the imagination, it requires not any formal refutation. I thall mention a fingle objection, which feems to be conclufive: If ether were the vehicle of light, as air and water are of found, the ear would likewife be, in fome degree, an organ of vifion.

LETTER XLI.

Of Vifion, and the Structure of the Eye.

IAM now enabled to explain the phenomena of vivifion, which is undoubtedly one of the greateft. operations of nature that the human mind can contemplate. Though we are very far fhort of a perfect knowledge of the fubject, the little we do know of it is more than fufficient to convince us of the power and wifdom of the Creator. We difcover in the ftructure of the eye perfections which the moft exalted genius could never have imagined.

I fhall not detain you at prefent with an anatomical defcription of the eye. It is fufficient to remark, that the exterior membrane $a \mathrm{~A} b$ (plate II. fig. 9.) is tranfparent, and is called the cornea of the eye; behind this, on the infide, is another membrane $a \mathrm{~m}$, $b \mathrm{~m}$, circular and coloured, which we call the iris, in the middle of which is an aperture $m m$, called the pupil, which appears to us to be black. We find behind this aperture, the cry/talline humour $b \mathrm{BC} a$, which is a body fomewhat like in form to a fmall burning glafs; it it perfectly tranfparent, and of 'a membranous fubftance, - Behind the cryftalline humour the cavity of the eye is filled with a tranfparent jelly, called the vitreous bumour. The anterior face between the horny tunicle $a \mathrm{~A} b$, and the cryf,
talline $a b$ contains a liquor fluid as water, which, for that reafon, is called the aqueous bumour.
Here, then, are four tranfparent fubftances, throug. 1 which the rays of light, that enter into the eye, muft pafs : 1. the horny tunicle, or cornea; 2. the aqueous humour, between A and B ; 3. the cryftalline $b \mathrm{~B}$ $\mathrm{C}^{\prime} a ; 4$. the vitroous humour. Thefe four fubftances differ as to denfity; and the rays paffing from one to another, undergo a particular refraction; and they are fo arranged, that the rays coming from a point of any object, are ftill collected within the eye in a point, and there prefent an image.

The bottom of the eye at E G F, or the retina, is furnifhed with a whitifh tiffue, adapted to the reception of images ; and it is thus, you will pleafe to recollect, that the images of objects may be reprefented on a white ground. Conformably to the fame principle, all the objects, whofe rays enter into the eye, are found painted on the retina. Take the eye of an ox, and having removed the exterior parts which cover the retina, you will fee all the objects painted there fo exactly, that no artift could exceed it, or even arrive at fuch a degree of perfection. And in order to fee any object whatever, the object muft almays be painted on the retina; and when, unfortunately, any of the parts of the eye are injured, or lofe their tranfparency, the perfon becomes blind.

But it is not fufficient, in order to our feeing objecis, that their images fhould be painted on the retina; fome are blind, though this takes place. Hence
we fee that images painted on the retina are not ${ }_{2}$ after all, the immediate object of vifion, and that the perception of the foul is communicated fome other way. The retina is a reticulated contexture of nerves the moft fubtile, communicating with a great nerve, which, coming from the brain, enters the eye at O, and is denominated the optic nerve. Thefe fmall nerves of the retina are agitated by the rays of light which form the image at the bottom of the eye; and this agitation is tranfmitted by the optic nerve to the brain. It is there, undoubtedly, that mental perception is formed: but the moft dextrous anatomift is unable to purfue thefe nerves to their fource: the union of the foul with the body muft for ever remain a myftery.
${ }_{15}$ th 2 Auguf 1760 .

LETTER XLII.

Continuation. Wonders dijcoverable in the Structure of the Eye.

IT will not be difagreeable to you, I hope, to contemplate with me, fomewhat more attentively, the wonders difcoverable in the ftructure of the eye. And firft the pupil prefents an object highly worthy of admiration. It is that aperture which we find in the middle of the iris or ftar, by which the rays pafs into the infide of the eye, and which appears black. The larger it is, the greater quantity of rays
can enter into the eye, to form on the retina the image which appears painted there; thus, the more the pupil is opened, the more brilliant this image will be.

On carefully examining the human eye, we obferve, that the aperture of the pupil is fometimes greater and fometimes fmaller. It is generally remarked, that the pupil is contracted when expofed to a very ftrong light; and, on the contrary, very much dilated where the light is faint. This variation is abfolutely neceffary to the perfection of vifion. When we are in a very ftrong light, the rays being more powerful, fewer of them are wanted to agitate the nerves of the retina; the pupil, accordingly, is then more contracted. Were it more dilated, and confequently admitted more rays, their force would agitate the nerves too violently, and occafion pain. It is for this reafon we are unable to look upon the fun without being dazzled, and without fenfible pain in the bottom of the eye.

Were it poffible for us to contract the pupil ftill more, fo as to admit only a very fmall quantity of rays, we fhould not be very greatly incommoded by it; but the contraction of the pupil is not in our own power. Eagles poffefs this advantage, and are able to look directly at the fun; it is accordingly remarked, that their pupil is then fo much contracted, as to appear reduced to a point. A clear light, requiring a very fmall dilatation of the pupil, in proportion as the light decreafes, the pupil dilates, and in the dark is fo enlarged, as- almoft to occupy the whole
whole of the iris. If it remained in the fame fate of contraction as in the light, the rays which enter into it would be too weak to agitate the nerves as much as is neceffary to perception ; the rays muf, therefore, be then admitted in greater abundance, in order to produce a fenfible effect.

Were it in our power to open the pupil fill more, we fhould be able to fee in a greater degree of darknefs. To this purpofe we are told of a perfon, who, having received a blow on his eye, the pupil was fo dilated by it, that he could read, and diftinguifl the minuteft objects in the dark. Cats and feveral other animals which roam in the dark, have the faculty of enlarging the pupil much more than the human fpecies; and owls have theirs at all times too much dilated to bear even a moderate degree of light.

Now, when the pupil of the human eye dilates or contracts, it is not by an act of the will; man not having the power of dilating or contracting the pupil at pleafure. As foon as he enters into a luminous fituation, it fpontaneoufly contracts and dilates on his return to darknefs. But this change is not produced in an inftant ; it requires a little time for this organ to accommodate itfelf to circumftances.

You muft, no doubt, have remarked, that as often as you make a very fudden tranfition from a clear light to a dark place, as in the theatre of Scbuck, you could not at firft diftinguifh the company. The pupil was ftill too narrow to permit the few feeble rays which it admitted to make a fenfible impreflion; but it gradually dilated to receive a fufficiency of rays.

The contrary happens, when you pais fuddenly from darknefs to a clear light. The pupil being then very. much expanded, the retina is ftruck in a lively manner, you are quite dazzled, and under the neceffity of fhutting your eyes.

It is then a very remarkable circumfance that the pupil fhould dilate and contract according as vifion requires, aid that this change fhould take place almoft fpontaneoully and independently of any act of the will. Philofophers who examine the ftructure and the functions of the human body, are greatly divided in opinion as to this fubject, and there is little appearance that we fhall ever have a fatisfying folution of this wonderful phenomenon. The variability of the pupil is, however, an object effentially neceffary to vifion; and without which it would be very imperfect. But various other particulars are difcoverable, equally entitled to admiration.

$$
1_{i} z_{t} \operatorname{Aug} y / t, 1 ; 60
$$

LETTER XLIII.

Farther Continuation. Afoni乃ing Difference between the Eye of an Animal, and the artifical Eye, or camera obfcura.

THE principle on which the fructure of the eye, is founded, is, in general, the fame as that according to which I explained the reprefentation of objects on white paper by means of a convex lens.

Both of them muft be refolved into this, that all the rays, proceeding from one point of the object, are again collected in a fingle point by refraction; and it feems of little importance whether this refraction is performed by a fingle lens, or by the feveral tranfparent fubftances of which the eye is compofed. It might even be inferred from thence, that a fructure more fimple than that of the eye, by employing one fingle tranfparent fubftance, would have been productive of the fame advantages; which would amount to a very powerful objection againft the wifdom of the Creator, who has affuredly purfued the fimpleft road in the formation of all his works.

Perfons have not been wanting who, from not having attentively examined the advantages refulting from the apparent complication, prefumed to cenfure this beautiful production of the Supreme Being with a levity worthy of cenfure. They have pretended it was in their power to produce a plan more fimple for the ftructure of the eye, becaufe they were ignorant of all the functions which that organ had to difcharge. I fhall examine this plan of theirs; and I hope to convince you, that it would be highly defective, and altogether unworthy of being put in competition with that which actually exifts.

Such an eye, therefore, would be reduced to a fimple convex lens, A B C D, (plate II. fig. 10.) which collects, in a point, all the rays coming from one and the fame correfponding point in the object. But this is only near to the truth. The fpherical form, given to the furfaces of a lens, is liable to this inconvenience,
inconvenience, that it does not completely collect in one and the fame point the rays which pafs through it's centre, and thofe which pafs through the extremities. There is always a finall difference, though almoft imperceptible, in the experiments, by means of which we receive the image on a piece of white paper ; but if this happened in the eye itfelf, it would render vifion very confufed.

The perfons to whom I have been alluding, allege, that it may be poffible to find another figure for the furfaces of the lens, which fhall have the property of collecting anew all the rays iffuing from the point O, in a point R, whether they pafs through the centre, or through the extremities. I admit that this may be poffible; but fuppofing the lens to poffefs this property, with refpect to the point O, at the fixed diftance C O, it would not poffefs it at points at a greater or lefs diftance from the lens; or, even admitting this to be poffible, which it is not, the lens would moft certainly lofe that property with regard to objects placed on one fide, at T, for inftance. Accordingly we fee that when objects are reprefented on white paper, though fuch as are directly before the lens, fay at O, may be fufficiently well expreffed, thofe which are obliquely fituated, as at T , are always much disfigured, and very confufedly exprefled: and this is a defect which the moft ingenious artife is incapable of rectifying.

But there is another and one not lefs confiderable: In fpeaking of rays of different colours, I remarked, that in paffing from one tranfparent medium to anon
ther, they undergo a different refraction; that rays of a red colour undergo the leaft refraction, and vio-let-coloured rays the greateft. Hence, if the point O were red, and if it's rays, in pafling through the lens A B, were collected at the point R, this would be the place of the red image. But if the point O were violet, the rays would be collected nearer to the lens, at V. Again, as white is an affemblage of all the fimple colours, a white object, placed at O, would form feveral images at once, fituated at different diftances from the point O; the refult of which would be, on the retina, a coloured fpot that would greatly difturb the reprefentation.

It is accordingly obfervable, that when in a dark room the external. objects are reprefented on white paper, they appear bordered with the colours of the rainbow, and it is impoffible to remedy this defect by employing only one tranfparent body. But it has been remarked, that this may be done by means of different tranfparent fubftances; but neither theory nor practice have hitherto been carried to the degree of perfection neceffary to the execution of a ftructure which fhould remedy all thefe defects.* The human

* A fimilar defect has been remarked in the common telefcope. Objects do not appear in it very clearly. You fee, befides, at the circumference of the field which it encompaffes, a mixture of colours, which is called iris. To remedy this inconveniency, achromatic telefcopes have been conftructed, whofe object-glafs, being compofed of more than one lens of different denfities, and which of confequence refract the rays differently, produce an effect analogrous to that of the tranfparent fubftances of the eye, of which our Author has been treating.-F. E.
eye, however, labours under none of the imperfections which I have mentioned, nor many others to which the hypothetical eye we have been analyzing would be liable. What a fublime idea muft we form of Him who has furnifhed not only the whole human fpecies, but every animal, nay even the vileft infects, with an organ of fuch curious conftruction!*
* The object of the Tranflator being not only to difplay Euler's philofophy, but likewife to exhibit the man as defigned by his own pencil, he takes the liberty of prefenting the Englifh Reader with the conclufion of this letter, in the Author's own manner and words, tranfcribed from the original edition of this work. Though a French philofopher and ftatefman may feel afhamed of the alliance of fcience to religion, and endeavour to keep it out of fight, it would furely ill become us to follow the example. Let the Author exprefs his own fentiments in his own way.
"But the eye which the Creator has formed is fubject to no " one of all the imperfections under which the imaginary con"fruction of the freethinker labours. In this we difcover the "true reafon why infinite wifdom has employed feveral tranfpa" rent fubftances in the formation of the eye: it is thereby fe"cured againft all the defects which characterife every work of " man. What a noble fubject of contemplation! How pertinent " that queftion of the Pfalmift! He woho formed the eye, fiall he not " See? and He zoho planted the ear, fall He not hear? The eye alone " being a mafter-piece that far tranfcends the human underfand"' ing, what an exalted idea muft we form of Him, whe has be"s fowed this wonderful gift, and that in the higheft perfection, " not on man only, but on the brute creation, nay, on the vileft "' of infects!"-E.E.
- 19th Awguft, 1760 .

LETTER XLIV.

Perfections dijcoverable in the Structure of the Eye.

THE eye, then, infinitely furpaffes every piece of mechanifm which human fkill is capable of producing. The different tranfparent fubftances of which it is compored, have not only a degree of denfity capable of caufing different refractions, but their figure is likewife determined in fuch a manner that all the rays proceeding from one point of the object are exactly collected in one and the fame point, whether that object be more or lefs diftant, whether it be fituated directly or obliquely with refpect to the eye, and though it's rays undergo different refractions.

Were the leaft change to be made.in the nature and figure of thefe fubftances, the eye would lofe all the advantages which we have been admiring. The ftrength of our fight is exactly proportioned to the extent of our neceffities; and far from complaining that objects too remote efcape this organ, we ought, on the contrary, to confider it as one of the moft precious gifts of the Supreme Being.*

[^26]It muft be farther remarked, that in order to fee objects diftinctly, it is not fuficient that the rays which come from one point fhould be collected in another. It is likewife neceffary, that the point of re-union fhould fall precifely on the retina; if it fell either fhort of, or beyond it; vifion would become confufed. Now, if for a certain diftance of objects, this point of union fall upon the retina thofe of more diffant objects would fall in the eye thort of the retina; and thofe of nearer objects would fall beyond the eye. In either cafe there, would be a confufion in the image painted on the retina.

The eyes of every man, therefore, are conftructed for a certain diftance. Some perfons fee diftinctly only fuch objects as are very near to their eyes; we call them Myops, that is, fhort-fighted. Others, on the contrary, named Prefbytes, fee diftinctly objects only which are very diftant. And thofe who fee diftinctly objects at a moderate diftance, are faid to have good eyes. Both the other two, however, have the power of contracting or dilating the globe of the eye to a certain degree, and thereby of bringing
hold the paper about half a foot from the other, in a frong light, and bring it gradually nearer; at a certain diftance the ftrokes will appear fringed with rainbow-colours. The Roman characters III or IIII, on the dial-plate of a watch, will anfwer ftill better. But though the eye is not conftructed with mathematical accuracy, that organ is adapted, with fufficient nicety, for all the ordinary purpoles of life. They miftake extremely the views of nature, who look for perfection in her works : fhe is, in general, fparing in her favours, and referves exquifite fkill for extraordinary occafions. $-E$. E.
nearer, or of removing, the retina, which enables them, likewife, to fee clearly, objects a little more or lefs diftant ; this, undoubtedly, greatly contributes to render the eye more perfect, and it cannot furely be afcribed to chance merely.

Thofe who have good eyes, derive moft advantage from their ftructure; as they are thus in a condition to fee diftinctly, objects very diftant, and very near; but this never exceeds a certain bound. There is, perhaps, no one who can fee at the diftance of an inch, and, confequently, fill lefs at a finaller diftance. If you hold a writing clofe to your eyes, you will fee the characters but very confufedly. This is all I prefume to offer, on a fubject of fuch high in= portance.
${ }_{21} \mathrm{f}$ / 4 zg . 1760.

LETTER XLV.

Of Gravity; confidered as a general Property of Body:

HAVING now treated of light, I proceed to the confideration of a property common to all bodies, that of gravity. We find that all bodies; folid and fluid, fall downward, when they are not fupported: I hold a ftone in my hand; if I let it go, it falls to the ground, and would fall ftill farther, were there an aperture in the earth: While I write, my paper would fall to the ground; were it not fupported by the table. The fame law applies to every

Vol. I.
body with which we are acquainted. There is not one that would not fall to the ground, if it were not fupported, or fopped by the way.

The caufe of this phenomenon, or of this propenfity of all bodies, is denominated gravity. When it is faid, that bodies are heavy, or poffefs gravity, we mean, that they have a propenfity to fall downward, and actually would fall, if we remove what before fupported them.

The ancients were little acquainted with this property. They betieved that there were bodies which had, naturally, a tendency to rife, fuch as fmoke and vapours; and fuch bodies they termed light, to diftinguifh them from thofe which have a tendency to fall. But it has been difcovered, by experiment, that it is the air which raifes thefe fubftances aloft ; for in a fpace void of air, it is well known; by means of the air-pump, that fmoke and vapours defcend as well as ftone, and that thefe fubftances are, of their own nature, heavy, like others. 'When, therefore, they rife into the air, the fame law acts upon them which acts upon a \log of wood plunged into the water. Notwithftanding it's gravity, it fprings up, as foon as you leave it to itfelf, and fwims, becaufe it is not fo heavy as water ; and, in virtue of a general rule, all bodies rife in a fluid of more gravity than themfelves.

If you throw a piece of iron, of copper, of filver, and cven of lead, into a veffel full of quickfilver, they fwim on the furface, and if you force them down, they re-afcend when left to themfelves. Gold
alone finks, becaufe it is heavier than quickfilver. And, fince there are bodies which rife in water, and in other fluids, notwithftanding their gravity, for this reafon merely, that they are not fo heavy as water, or thofe other fluids; it is not at all furprizing, that certain bodies, lefs weighty than air, fuch as fmoke and vapours; fhould rife in it.

I have already remarked, that air itfelf poffeffes gravity, and that by means of this gravity, it fupports the mercury in the barometer. When, therefore, it is affirmed, that all bodies are heavy, it is to be underftood, that all bodies, without a fingle exception, would fall downward in a vacuum. I might venture to add, that they would fall with an equal degree of rapidity; for a feather and a piece of gold defcend with equal velocity in an exhaufted receiver.

It might be objected to this general property of body, that a fhell, difcharged from a mortar, does not at once fall to the ground, like a ftone, which I let drop from my hand, but mounts into the air. It cannot, however, be inferred, that the fhell has no gravity; for it is evident, that the ftrength of the powder hurls the bomb aloft, and but for this, it would, without doubt, immediately fall to the ground. And we fee, in fact, that it does not continue always to afcend, but as foon as the force, which carries it upward, is exhaufted, down it comes with a rapidity, that crufhes every thing it meets, a fufficient proof of it's gravity.

When, therefore, it is affirmed, that all bodies are heary, no one means to deny that they may be
ftopped, or that they may be thrown aloft; but this is effected by an external power, and it remains indubitably certain, that all bodies whatever, as foon as left to themfelves, at reft, or without motion, will affuredly fall when no longer fupported. There is a cellar under my apartment, but the floor fupports me, and p̀referves me from falling into it. Were the floor fuddenly to crumble away, and the arch of the cellar to tumble in at the fame time, I muft infallibly be precipitated into it, becaufe my body is heavy, like all other bodies with which we are acquainted. I fay, with which we are acquainted, for there may, perhaps, be bodies deftitute of weight; fuch as, poffibly, light itfelf, the elementary fire, the electric fluid, or that of the magnet.*

Except thefe bodies, the gravity of which is not

* I muft once more take the pious Euler out of the hands of the quondam Marquis, and let him fpeak for himielf. The inftance which the Author adduces, of bodies that, poffibly, are defititute of gravity, is one taken from divine Revelation, that of the angels. "Such," fays he, " as the bodies of angels, which have "formerly appeared to men. A body, like this, would not fall "downward, though the floor were fuddenly to be removed from "under it, but would move as firmly through the air, as on the "earth." It is amufing to obferve, with what folicitude the Parifian Annotator keeps clear of every thing that favours of religion. He feems apprehenfive, that a fingle drop of water from Scripture, would contaminate the whole mafs of philofophy. His terror is, with a little variation, that of Macbeth.
\mathbf{W}^{\top} ill all great Neptune's ocean wafh this blood
Clean from my hand? 'No; this my hand will rather The multitudinous feas incarnadine, Making the green one red.
yet confirmed by experiment, gravity may be confidered as a general property of all the bodies which we know, in virtue of which, they all have a tendency to fall downward, and actually do fo, when nothing oppofes their defcent.
23d Aug. 1760,

LETTER XLVI.

Continuation. Of Jpecific Gravity.

YOU have juft feen, that gravity is a general property of all the bodies with which we are acquainted, and that it confifts in the effect of an invincible force, which preffes them downward.

Philofophers have warmly difputed, whether there actually exifts a power, which acts in an invifible manner upon bodies; or whether it be an internal quality, inherent in the very nature of the bodies, and, like a natural inftinct, conftraining them to defcend. The queftion amounts to this: If the caufe of gravity is to be found in the very nature of every body; or if it exifts without it, fo that were this extrinfic power to fail in it's operation, the body would ceafe to be heavy? Before we attempt a folution of this, it will be neceffary to examine, more carefully, all the circumftances connected with gravity.

I remark, firf, that when you fupport a body to prevent it's falling, if it refts on a table, it's preffure
is equal to the force with which it would tend to fall; and if a thread is affixed to it, by which it may be fufpended, the thread is ftretched by that force ; in other words, by the gravity of that body; fo that if the thread were not of a certain ftrength, it would break. We fee, then, that all bodies exercife a degree of force on the obftacles which fupport them, and prevent their falling, and that this action is precifely the fame as that which would make the body defcend, if it were at liberty. When a foone is laid upon a table, the table is preffed by it. You have but to put your hand between the fone and the table, to be fenfible of this force, which may be increafed to fuch a degree as even to crufh the hand. This force is called the gravity of the body; and it is clear, that the weight, or the gravity, of every body, fignifies the fame thing, both denoting the force with which that body is preffed downward, whether this force exifts in the body itfelf, or out of it.

We have an idea too clear of the weight of bodies, to make it neceffary to dwell longer on the fubject. I only remark, that when two bodies are joined together, their weight too is added, fo that the weight of the compound is equal to the fum of the weight of the parts. From this we fee, that the weight of bodies may be very different. We have alfo the cer, tain means of exactly meafuring and comparing them, by the help of a balance, which has the property of refting in equilibrium, when the bodies, put in it's two fcales, are of equal gravity, In order
to make this comparifon, we agree on fome fixed meafurement, of a certain determinate weight, fuch as a pound, and, by means of a good balance, all bodies may be weighed, and their gravity afcertained, according to the number of pounds which they contain. A body too great to be put into the fcale of a balance may be divided, and the parts being weighed feparately, you have only to add the particulars. The weight of a whole houfe, however large, may be thus afcertained.

You muft, no doubt, have frequently remarked, that a fmall piece of gold weighs as much as a piece of wood greatly fuperior in fize; a proof that the gravity of bodies is not always regulated by thcir magnitude; a very fmall body may be of great weight, while a-very large one may be light. Every body, then, is fufceptible of two meafurements, entirely different from each other. The one determines it's magnitude or extent, called likewife it's fize; this meafurement belongs to the province of geometry, which teaches the method of meafuring the magnitude or extent of bodies. The other mode of meafurement, by which their weight is determined, is totally different, and ferves to diftinguifh the nature of the different fubftances of which bodies are formed.

You can eafily conceive feveral mafles of different fubftances, all of the fame magnitude, or extent; each, for example, of a cubic figure, whofe length, breadth, and height, fhall be a foot. Such a mafs, if it be of gold, would weigh 1330 pounds; if of
filver, 770 pounds; if of iron, 500 pounds ; and if of water, only 70 pounds; were it of air, it would weigh no more than the twelfth part of a pound. From this you fee, that the different fubftances of which bodies are compofed, vary confiderably in refpect of gravity.

To exprefs this difference, we employ certain terms, which might appear equivocal, if they were not perfectly underfood. Thus, when it is faid, that gold is heavier than filver, it is not to be underftood, that a pound of gold is heavier than a pound of filver; for a pound, of whatever fubftance, is always a pound, and has always precifely the fame weight ; but the meaning is, that having two maffes of the fame fize, the one gold and the other filver, the weight of the mafs of gold will exceed that of the filver. And when it is faid, that gold is 19 times heavier than water, we mean, that having two equal maffes, the one of gold, the other of water, that which is of gold will have 19 times the weight of that which is of water. When we thus exprefs ourfelves, we fay nothing of the abfolute weight of bodies, we only fpeak by way of comparifon, and with a reference always to maffes of an equal fize. Neither is it of importance, whether the fize be great or fmall, provided they be equal.

$$
25 t h \text { Aug. } \times 760
$$

LETTER XLVII.

Terms relative to Gravity, and their truc Import.

GRAVITY, or weight, feems fo effential to the nature of bodies, that it is almoft impofible to form the idea of a body divefted of this quality. And it's influence is fo univerfal, in all our operations upon body, that we muft, in every inftance, pay, attention to it's gravity, or weight. As to our own perfons, whether we ftand, fit, or lie, we continually feel the effect of the gravity of our own body: we could never fall, if the body were not, as well as all it's parts, endowed with this force. Language itfelf is regulated according to this property of bodies. The place toward which a body tends in it's defcent, we terin low; and the oppofite direction from the body, we term bigh.

It muft be remarked, that when a body, in falling, is at perfect liberty, it always defcends in a ftraight line, purfuing which, it's direction is faid to be downward. This line is likewife called vertical, by which term we always mean a ftraight line, drawn from high to low ; and if we conceive this line produced upward, till it reaches heaven, we call that point in the heavens our zenith, an Arabian word, denoting that point in the heavens which is directly over our head. You comprehend, then, that a vertical line, is that ftraight line in which a body falls, when no longer fupported!: When you aflix a thread
to any body, holding it faft at the other end, that thread will be ftretched out into a ftraight line, and that line will be vertical. Mafons employ a fmall cord, with a leaden ball at one end, which they call a plummet, to direct the perpendicularity of the walls which they raife; for thefe, to be folid, muft be vertical.

All the floors of a houfe ought to be fo level, that the vertical line fhall be perpendicular to them; the floor, in that cafe, is faid to be horizontal; and you will pleafe to remember, that a horizontal plane is always that to which the vertical line is perpendicular. When you are in a perfect plane, bounded by no mountain, it's extremities are termed the borizon, a Greek word, which fignifies the boundary of fight; and this plane then reprefents a horizontal plane, juft as the furface of a lake.

We make ufe of ftill another term to exprefs what is horizontal. We fay that fuch a furface or line is level. We likewife fay, that two points are on the level, when a fraight line, paffing through thefe two points, is horizontal, fo that the vertical, or plumb line, Thall be perpendicular to it. But two points are not on the level, when the ftraight line, drawn through thefe points, is not horizontal ; for then one of them is more elevated than the other.

This is the cafe with rivers; their furface has a declivity; for were it horizontal, the river would be ftagnant, and run down no longer, whereas all rivers are continually flowing toward places lefs elevated, There are inftruments, by means of which we can
aícertain, whether two points are on the fame level, or which is the higher, and by how much. This inftrument is called a level, and the application of it is called the art of levelling.

Were you to draw a ftraight line from any point, in your apartment at Berlin, to a given point in your apartment at Magdcburg, you might, by means of fuch an inftrument, afcertain, whether this line were horizontal, or whether one of thefe points were more or lefs elevated than the other. I believe the point at Berlin would be more elevated than that at Magdeburg: and I found this opinion on the courfe of the rivers Sprée, Havel, and Elbe. As the Sprée runs into the Havel, it muft, of courfe, be higher ; and, for the fame reafon, the Elbe muft be lower than the Havel: Berlin, therefore, ftands higher than Magdeburg, provided you compare two points at an equal degree of elevation from the ground; for were a ftraight line to be drawn from the ftreet pavement at Berlin to the pinnacle over the dome at Magdeburg, that line would perhaps be horizontal.

Hence you fee how ufeful the art of taking levels is, when the conducting of water is concerned. For as water can run only from a more to a lefs elevated fituation, before digging a canal, you muft be well affured, that one of the extremities is more elevated than the other, and this is difcovered by taking the level.

In building a city, the ftreets flould be fo difpofed, as that, by means of a declivity on one fide, the water may run off, It is otherwife in the conftruc-
tion of houfes, the floors of which fhould be perfectly horizontal, and without the finalleft declivity, becaufe there is no water to be difcharged, except in the floors of ftables, which are conftructed with a gentle declivity. Aftronomers take great pains to have the floors of their obfervatories perfectly level, to correfpond with the real horizon in the heavens. The vertical line, produced upward, marks the zenith.
27th Auguff, 1760 .

LETTER XLVIII.

> Reply to certain Objections to the Earth's Jpherical Figure, derived from Gravity.

YOU know well that the figure of the earth is nearly that of a globe. It has, indeed, been demonftrated, that it's form is not perfectly fpherical, but fomewhat flattened toward the poles. The difference, however, is fo trifling, that it does not at all affect the object I have in view. Neither does the difference of mountain and valley excite any folid objection to it's globular figure; for it's diameter being 1720 German miles,* whereas the higheft mountains being fcarcely half a mile \dagger in height, fink into nothing, compared to this prodigious mafs.

The ancients had a very imperfect notion of the

- 7900 miles Englifh.
\dagger About 12,000 feet, or 2^{3} miles Englifh.
real figure of the earth. It was in general confidered as a huge maffy fubftance A B C D (plate II. fig. 11.) flattened above as A B, and covered partly with earth, partly with water. According to their idea, the furface A B alone was habitable; and it was impoffible to go beyond the points A and B, which they confidered as the extremities of the world. When, in the progrefs of difcovery, it was found that the earth was nearly fpherical, and univerfally habitable, fo that there were upon the globe fpots diametrically oppofite to us, the inhabitants of which are therefore called our antipodes, becaufe their feet are turned directly toward ours; this opinion met with fuch violent contradiction, that certain fathers of the church reprefented it as a dreadful herefy, and thundered out anathemas againft all who believed in the exiftence of the antipodes. A man, however, would now pafs for an idiot, who would call it in queftion ; efpecially fince the opinion has been confirmed by the experience of navigators, who have actually more than once failed round the globe. But another difficulty here prefents itfelf, the folution of which muft affift us in difcovering the real direction of gravity.

If the circle A B (plate II. fig. 12.) fay they, reprefents the earth, and we are at A, our antipodes will be diametrically oppofite, at B. As we, then, have the head upward, and the feet downward, our antipodes muft have the feet upward and the head downward, fuppofing thefe words to indicate the fame direction as when we pronounce the fame
words at the place where we are. For navigators who have made the circuit of the globe, obferve, that their head and feet had throughout maintained the fame pofition relatively to the furface of the ter. reftrial globe.

Some perfons whom this phenomenon embarraffed, formerly thought of explaining it, by the comparifon of a globe, over the furface of which you fee flies and other infects crawl on the under as well as the upper part. But they did not confider that. the infects on the dependent furface adhere to it by their claws, and, without this affiftance, would prefently fall off. The antipode, then, muft have his. fhoes furniffed with hooks to hold him faft to the furface, of the earth: but though he has none, he falls not any more than we do. Befides, as we imagine ourfelves to be on the uppermoft furface of the earth, the antipode has the farne idea of his fituation, and confiders us as undermoft.

But the whole phenomena are eafily accounted for, on the hypothefis which experience has demonfurated, that the direction of gravity is fenfibly perpendicular to the furface of the earth, at every point of that furface; that it varies at thefe different points; and that at thofe which are antipodes to each other, it muft be exacly oppofite. The terms upward and downrvard, therefore, do not exprefs an invariable direction, but the direction of gravity, wherever it is. Our antipodes have their heads downward only with relation to us, but not with relation to themfelves; they, as well as we, are in the pofition which

the power of gravity conftrains them to preferve; and that pofition is fimilar relatively to the furface of the earth. You had, undoubtedly, no need of this explanation; but there was a time, and it is not long elapfed, when it would have been neceffary even to perfons who were then honoured with the appellation of the learned.
$28 t b$ Ausuff, 1760.

LETTER XLIX.
True Direction and Action of Gravity relatively to the Earth.

THOUGH the furface of the earth is unequal, becaufe of the mountains and valleys which overfpread it, it is, however, perfectly level wherever there is fea; the furface of water being always horizontal, and the vertical line, in the direction of which bodies fall, being perpendicular to it. If, then, the whole globe were covered with water, at whatever fpot of the furface a perfon was, the vertical line would be perpendicular to the furface of the water.

Thus, the figure A B CDEFGHI (plate III. fig. i.) reprefenting the earth, it's furface being every where horizontal; at A the line $a \mathrm{~A}$ will be vertical; at B the line $b \mathrm{~B}$; at C - tabline $c \mathrm{C}$; at D the line $d \mathrm{D}$; at F the line $f \mathrm{~F} ;$ and Q of the reft. Now, at every place the vertical fine determines what is to be denominated uproard or dorunzuard; to perfons at A, then,
then, the point A is downward, and the point a upward: and to perfons at F, the point F will be downward, and the point f upward, and fo for every other fpot on the furface of the earth. All thefe vertical lines $a \mathrm{~A}, b \mathrm{~B}, c \mathrm{C}, d \mathrm{D}, \& \mathrm{c}$. are likewife ramed the directions of gravity, or weight, becaufe bodies univerfally defcend in the direction of thefe lines; thus a body left to itfelf at g, would fall in the direction of the line $g \mathrm{G}$. Hence it is evident, that bodies, univerially, muft fall toward the earth, and that perpendicularly to the furface of the earth, or rather of the water, if it were water.

At whatever place of the earth, therefore, you may happen to be, as bodies fall there toward it's furface, we call downzward that which is directed toward the earth, or is neareft to it; and upward what is placed in the oppofite direction, or is fartheft from the earth : and, univerfally, men having their feet preffed to the earth, their feet will be downward, and their heads upward. If the earth were a perfect globe, all the vertical lines $a \mathrm{~A}, b \mathrm{~B}, c \mathrm{C}$, being pro* duced inwardly, would meet at the centre of the globe, which is likewife that of the earth; and for this reafon we fay that bodies univerfally tend toward the centre of the earth. Thus; wherever you are placed, when afked, what is downward? the anfwer muft be, what approaches neareft to the centre of the earth. In fact, were you to dig a hole in the earth at whatever place, and to continue your labour inceffantly, digging always downward and downward perpendicularly, you would at length
reach the centre of the earth. You will remember how Voltaire ufed to laugh at the idea of a hole reaching to the centre of the earth, mentioned by Maupertuis. It is true fuch a project could never be executed, as it would be neceffary to dig to the depth of 860 German miles ;* but there is no harm in fuppofing it, in order to difcover what would be the refult.

Let us fuppofe, then, fuch a hole (plate III. fig. 2.) to be dug at A , and continued beyond the centre of the earth O , the whole length of the diameter, as far as to our antipodes B , and that we were to defcend along this aperture. Before arriving at the centre O , and having reached, for example, to point E , the centre of the earth O will there appear downward, and the point A upward; and, unlefs fomething fupported us, we fhould fall toward O. But having pafied beyond the centre to F, for example, our gravity would then have a tendency toward O; this point, and much more the point A, would appear downward, and the point B upward. Thus the terms upward and downward would fuddenly change their fignification, though we fhould have pafied from A to B, in the direction of a ftraight line.

As long as we are on the paffage from A to O , we are defcending; but in going from O to B , we are actually rifing, for we are removing from the centre of the earth; our own gravity being always directed toward that point ; fo that, if we were to fall, whether from E or from F, we fhould always fall toward

[^27]Vol. I.
O
the centre of the earth. Our antipode at B, if he wanted to pafs from B to A, would be in precifely the fame fituation. From B to the centre O he would have to defcend; but from O to A it would be all an afcent. Thefe confiderations lead us thus to define gravity or weight. It is a power by which all bodies are forced toward the centre of the earth. The fame body which, being at A, is forced in the direction $A O$, if tranfported to B, will be forced, by the power of gravity, in the direction B O, which is directly oppofite to the other. By the direction of gravity, then, we every where regulate the fignification of the terms uprward and downward, rije and defcend, as gravity or weight has a very effential influence on all our operations and enterprifes, and as even our own bodies are animated by it to fuch a degree, as univerfally to feel it's effects.

$$
29^{t} b \text { Auguft } 1760 .
$$

LETTER L.

Different Action of Gravity with refpect to certain Coun tries and Diftances from the Centre of the Earth.

YOU are now fenfible that all bodies are forced directly towards the centre of the earth, and perpendicularly to it's furface by their gravity: the perpendicular lines at the furface of our globe are accordingly confidered as the directions of the power of gravity.

With ftrict propriety is the term power applied to gravity, as every thing capable of putting a body in motion is expreffed by that name. Thus we afcribe power to horfes, becaufe they are able to draw along a chariot; or to the current of a river, or to the wind, becaufe by their means mills may be put in motion. There can be no doubt, therefore, that gravity is a power, as it forces bodies downward: and we are abundantly fenfible of the effect of this power, by the preffure which we feel when we cairy a load.

Now, in every power two things are to be confidered : firft, the direction in which it acts, or forces along bodies; and, fecondly, it's quantity, which is eftimated by the effect it produces. As to the direction of gravity, it is fufficiently known, for we are fure that it forces all bodies toward the centre of the earth, or, which amounts to the fame thing, that it acts perpendicularly to the furface of our globe.

It remains, therefore, that we examine it's quantity. This power is always determined by the weight of every body, ${ }^{*}$ and as bodies differ greatly with refpect

* In order to form an exact idea of the weight of a body, it muft be recollected, that gravity imprefles, or has a tendency to imprefs, on every particle of bodies, in an inftant, a certain velocity, with which they would fall, if they were not fupported; and that, abftracting the influence of the air, this velocity would be the fane for each of the particles of bodies, whatever be their fubfance. This being laid down, we muft underfand by the weight of a body the effort neceffary to prevent it from falling; and it is evident that, in order to this, it is neceffary to deffroy the velocity.
fpect to weight, thofe which are heavieft are likewife forced downward with the greateft violence. It has been alked, Whether the fame body, tranfported to a different place of the globe, preferves always the fame weight? I fpeak of bodies which lofe nothing. by evaporation. It has been demonitrated, by undoubted experiments, that the fame body weighs fomewhat lefs toward the equator, than toward the poles of the earth.

It will readily occur to you, that it is impoffible to afcertain this difference by the exacteft balance, becaufe the ftandard weights employed for determining the weight of matter in bodies, undergo the which gravity has impreffed on every particle: This effort muft, therefore, be equal to the fum of the velocities of all thefe particles. Hence it may be eafily concluded, that bodies the moft compact, that is, thofe whofe particles are the clofeft, and which, confequently, contain a greater number of them in the fame bulk, will weigh more than others, becaufe the weight being the fum of the velocities impreffed on each particle, that fum muft be fo much greater, as there are more material particles contained in the shafs of the body.

From what I have juft faid, "we fee the neceffity of carefully " diftinguifhing between the efficet of gravity and that of weight: " the former is the power of tranfmitting, or a tendency to tranf" mit into every particle of matter a certain velocity, which is ab" folutely independent on the number of material particles; and "t the fecond is the effort which muft be exercifed to prevent a " given mafs from obeying the law of gravity." Weight, accord" ingly, depends on the ma/s, but gravity has no dependance at all upon " it."

I thought myfelf obliged to enter thus minutely into the fubject, as the notions commonly entertained of it are not very exact. $-F . E$.
fame variation. Thus a mafs, which with us might weigh 100 pounds, being tranfported to the equator, would fill nominally be 100 pounds weight, but the effort will be fomewhat lefs than here. This variation has been difcovered by the effect itfelf of the power of gravity, which is the velocity of the defcent, for it is found that the fame body, under the equator, does not defcend with fo great velocity as in high latitudes. It is certain, therefore, that the fame body, being tranfported to different places of the earth, undergoes a little change as to weight.

Let us, now return to the aperture made in the earth through it's centre; it is clear, that a body at the very centre muft entirely lofe it's gravity, as it could no longer move in any direction whatever; all thofe of gravity tending continually toward the centre of the earth. Since, then, a body has no longer gravity at the centre of the earth, it will follow that, in defcending to this centre, it's gravity will be gradually diminifhed; and we accordingly conclude, that a body, penetrating into the bowels of the earth, lofes it's gravity, in proportion as it approaches the centre. You muft be fenfible, then, that neither the intenfity nor the direction of gravity is a confequence from the nature of every body, as not only it's intenfity is variable, but likewife it's direction, which, on pafing to the antipodes, becomes quite contrary.

Having travelled, in idea, to the centre of the earth, let us return to it's furface, and afcend to the fummit of the loftieft mountains. We fhall obferve
there no fenfible change in the gravity of bodies, though there is very good reafon to believe that the weight of a body diminifhes in proportion as it removes from the earth. You have but to imagine a body gradually removing from our globe, till it reached the fun, or one of the fixed ftars, it would be ridiculous to think that fuch a body muft fall back to the earth, as it is almoft a nothing compared to thefe ftars. Hence, then, it may be concluded, that a body in removing from the earth muft undergo a diminution of gravity, which will become fmaller and fmaller, till at laft it wholly difappear.

There are reafons, however, which demonftrate, that a body removed to the diftance of the moon, will ftill have fome weight, though 3600 times lefs than it had on the earth. Let us conceive fuch a body to weigh 3600 pounds on the earth, no one, furely, is capable of fupporting it here ; but convey it to the diftance of the moon, and I fhall engage to. fupport it with one of my fingers, for then it will weigh only one pound ; and farther removed, would weigh fill lefs. We are certain, therefore, that gravity is a power which forces all bodies toward the centre of the earth, that this power acts with the greateft force at the furface of the earth, and is diminifhed in proportion as it removes from thence, whether by penetriating toward the centre, or rifing. above the furface of the globe. I have ftill much to fay on this fubject.

30tb Auguf, 5760 .

LETTER LI.

Gravity of the Moon.

IHAVE faid that a terreftrial body, placed at the diftance of the moon, would be reduced to the3600 th part of it's weight, or, in other words, would be forced toward the centre of the earth with a power 3600 times lefs than it has at the furface of the globe. This power, however, would be fufficient to make it defcend to the earth, if it were no longer fupported. It is true we are incapable of proving this by any experiment, as no means exift of raifing ourfelves to fuch a height. There is, however, a body at that height, the moon : fhe muft, therefore, be fubject to this effect of gravity, and yet we fee the does not fall to the earth.

To this I anfwer, that if the moon were at reft, fhe would certainly fall, but the rapid motion which carries her along prevents her falling. There are experiments which prove the folidity of this anfwer. A ftone dropped from the hand, without having any motion imprefled upon it, falls immediately, in the direction of a ftraight vertical line ; but if you throw this ftone, impreffing on it a motion which forces it out of that direction, it does not fall immediately downward, but moves in a curve line before it reaches the earth, and this will appear more fenfibly in proportion to the velocity impreffed upon it.

A cannon ball, difcharged in a horizontal direc-
tion, does not come to the earth till it has got to a confiderable diftance; and were it fired from the top of a high mountain, it might, perhaps, fly feveral miles before it reached the ground. If the direction of the cannon is farther elevated, and the quantity and ftrength of the powder increafed, the ball will. be carried much farther. This might .be carried fo far, that the ball fhould not light till it had.reached the antipodes : nay, farther fill, till it fhould not fall at all, but return to the place where it was fhot off, and thus perform a new tour round the globe. It would thus be a little moon, making it's revolutions, round the earth like the real moon.

You will now pleafe to reflect on the height of the moon, and the prodigious velocity with which fhe moves, and you will no longer be furprifed that free fhould not fall to the earth, though forced by gravity toward it's centre. There is another reflection which will place this in a clearer light. We have only to confider the path defcribed by a ftone thrown, or a cannon ball fhot off, in an oblique direction. It is always a curve, fuch as reprefented in the annexed figure (plate III. fig. 3).

Let A be the fummit of a mountain from which the cannon ball is fired off, which, after having moved in the direction A E FB, falls to the ground at B; and the path which it defcribes is a curve line. I remark, then, that if the ball were not heavy, that is, if it were not forced toward the earth by the power of gravity, it would not fall, though left to itfelf, as gravity is the only caufe of it's defcent;
much lefs, being fired off at A, as reprefented in the figure, would it ever fall to the ground. Hence we fee, it is gravity that brings it down to the ground, after having defcribed the curve A E F B; gravity, therefore, directs it's path in the curve A EF B; and if it were deftitute of gravity, the ball would not defcribe a curve, but proceed forward in the direction of the ftraight line A C, the direction in which it was fired off.

This being laid down, let us attend to the moon, which affuredly does not move in a ftraight line; her path muft, of necefiity be a curve, as fhe always preferves nearly, the fame diftance from us, and that curve almoft a circle, fuch as you would defcribe round the earth, with a radius equal to the moon's diftance.

It is very reafonable to demand, Why the moon does not move in a ftraight line? But the anfwer is obvious; for as gravity occafions the curve direction of the path purfued by a ftone thrown, or a cannon ball fired off, there is good ground for maintaining, that gravity acts likewife upon the moon, forcing her toward the earth; and that this gravity occafions alfo the curve direction of her orbit: The moon, then, has a certain weight, fhe is, of confequence, forced toward the earth; but this weight is 3600 times lefs than it would be at the furface of the earth. This is not merely a probable conjecture, but a truth demontrated. For this gravity being fupnofed, we are enable to determine, on the moft eftablifhed ma-
thematical
thematical principles, the path which the moon muft purfue ; and this is found perfectly to agree with that in which the actually does move; and this is a complete demonftration of the truth of the affertion.

$$
\text { If September, } 1760
$$

LETTER LII.

Difcovery of univerfal Gravitation by Newton.

GRAVITY, then, or weight, is a property of all terreftrial bodies, and it extends, likewife, to the moon. It is in virtue of gravity that the moon preffes toward the earth; and gravity regulates her motion juft as it directs that of a ftone thrown, or of a cannon ball fired off.

To Neruton we are indebted for this important difcovery. This great Englifh philofopher and geometrician, happening one day to be lying under an apple-tree, an apple fell upon his head, and fuggefted to him a multitude of reflections. He readily conceived that gravity was the caufe of the apple's falling, by overcoming the force which attached it to the branch. Any perfon whatever might have made the fame reflection; but the Englifh philofopher purfued it much farther. Would this force have always acted upon the apple, had the tree been a great deal higher? He could entertain no doubt of it.

But had the height been equal to that of the moon?
Here

Here he found himfelf at a lofs to determine whether the apple would fall or not. In cafe it fhould fall, which appeared to him, however, highly probable, fince it is impoffible to conceive a bound to the height of the tree, at which it would ceafe to fall, it muft fill have a certain degree of gravity forcing it toward the earth; therefore, if the moon were at the fame place, flie muft be preffed toward the earth by a power fimilar to that which would act upon the apple. Neverthelefs as the moon did not fall on his head, he conjectured that motion might be the caufe of this, juft as a bomb frequently flies over us, without falling vertically.

This comparifon of the motion of the moon to that of a bomb, determined him attentively to 'examine this queftion; and, aided by the moft fublime geometry, he difcovered, that the moon in her motion was fubject to the fame laws which regulate that of a bomb, and that if it were poffible to hurl a bomb to the height of the moon, and with the fame velocity, the bomb would have the fame motion as the moon, with this difference only, that the gravity of the bomb at fuch a diftance from the earth, would be much lefs than at it's furface.

You will fee, from this detail, that the firft reafonings of the philofopher on this fubject were very fimple, and fcarcely differed from thofe of the clown; but he foon puifhed them far beyond the level of the clown. It is, then, a very remarkable property of the earth, that not only all bodies near it, but thofe alfo which are remoṭ, even as far as to the diftance
of the moon, have a tendency toward the centre of the earth, in virtue of a power which is called gravity, and which diminifhes in proportion as bodies remove from the earth.

The Englifh philofopher did not fop here. As he knew that the other planets are perfectly fimilar to the earth, he concluded, that bodies adjacent to each planet poflefs gravity, and that the direction of this gravity is toward the centre of fuch planet. This gravity might be greater or lefs there than on the earth; in other words, that a body of a certain weight with us, tranfported to the furface of any planet, might there weigh more or lefs.

- Finally, this power of gravity of each planet extends, likewife, to great diftances around them; and as we fee that Jupiter has four fatellites, and Saturn five, which move round them juft as the moon does round the earth, it could not be doubted, that the motion of the fatellites of Jupiter was regulated by their gravity toward the centre of that planet; and that of the fatellites of Saturn by their gravitation toward the centre of Saturn. Thus, in the fame manner as the moon moves round the earth, and their refpective fatellites move round Jupiter and Saturn, all the planets themfelves move round the fun. Hence Nerwton drew this illuftrious and important conclufion: That the fun is endowed with a fimilar property of attracting all bodies toward it's centre, by a power which may be called folar oravity.

This power extends to a prodigious diftance around him, and far beyond all the planets, for it is this
power which modifies all their motions. The fame great philofopher difcovered the means of determining the motion of bodies from the knowledge of the power by which they are attracted to a centre; and. as he had difcovered the powers which act upon the planets, he was enabled to give an accurate defcription of their motion. In truth, before he arofe, the world was in a ftate of profound ignorance refpecting the motion of the heavenly bodies; and to him alone we are indebted for all the light which we now enjoy in the fcience of aftronomy.

It is aftoninhing to think how much of their progrefs all the fciences owe to an original idea fo very fimple. Had not Nerwton accidentally been lying in an orchard, and had not that apple by chance fallen on his head, we might, perhaps, ftill have been in the fame fate of ignorance refpecting the montions of the heavenly bodies, and a multitude of other phenomena depending upon them.* This fubject, undoubtedly, is altogether worthy of your attention, and fhall therefore be refumed in a future letter.

3d September, 1760.

* Newton was afked one day, How he had difcovered the fyitem of the uniserfe? By continually thinting upon it, replied he. This anecdote has a greater air of probability than the frory of the ajple.-F.E.

LETTER LIII.

Continuation. Of the mutual Attraction of the beaventy

 Bodies.THE Newtonian fyftem, you will eafily believe, made at firft a great noife, and with good reafon, as no one had hitherto hit upon a difcovery fo very fortunate, and which diffufed, at once, fuch clear light over every branch of fcience. It has been expreffed by feveral names, of which it is proper you fhould be informed, becaufe it is frequently the fubject of converfation.

It has been denominated, the fyftem of univerfal ' gravitation ; for Neruton maintained, that not only the earth, but all the heavenly bodies, in general, are endowed with this property, of attracting thofe which furround them, with a power fimilar to that of weight, or gravity: hence is derived the term Gravitation. This power is, however, totally invifible; for we fee nothing acting upon bodies, and preffing them toward the earth, and fill lefs toward the heavenly bodies.

The loadftone, by which iron and fteel are attracted, without our' being able to difcern the caufe, prefents a phenomenon fomewhat fimilar. Though it be now certain, that this is produced by a fubftance extremely fubtile, which penetrates through the pores of the loadftone and of the iron, it may, however, be affirmed, that the loadfione attracts iron, and that
iron is attracted by it, provided this manner of fpeaking does not exclude the true caufe. It may likewife be affirmed, then, that the earth attracts all bodies that are near it, nay thofe which are at very great diftances; and we may confider the weight, or gravity, of bodies, as the effect of the attraction of the earth, which acts even upon the moon.*

Again, the fun, and all the planets, are endowed with a fimilar power of attraction, which extends to all bodies. In conformity to this manner of fpeaking, we fay, that the fun attracts the planets, and that Jupiter and Saturn attract their refpective fatellites; hence Neruton's fyftem has likewife been denominated, the fyftem of Attraction. As there can be no doubt that bodies very near the moon muft likewife be preffed to it by a power fimilar to gravity, it may likewife be affirmed, that the moon, too, attracts adjoining bodies.

It was natural to fuppofe, that this attraction of the moon fhould extend as far as the earth, though it muft be, undoubtedly, very feeble, as we have feen

* So far is the exiftence of a magnetic fluid from being undeniable, that it is highly improbable, if not abfurd. The various phenomena of magnetifm may clearly be derived from two laws, or general facts; than which a greater fimplicity can hardly be expected. If we recur to the agency of a fluid, we muft gratuitoufly beftow on it a number of properties; and, after all, we fhall find it extremely difficult, I might fay, impoffible, to preferve confiftency in our complicated hypothelis; nor flall we ever be able, from our affiumptive principles, to account for the facts obferved. Such, at leaft, has been the fate of the fpeculations hitherto offered on the fubject of magnetifm,-E. \boldsymbol{E}..
that of the earth upon the moon to be; now, the fame philofopher has placed this, alfo, beyond the reach of doubt, by demonftrating that the flux and reflux of the waters of the fea, of which I fhall take occafion to fpeak afterwards, are caufed by the attraction of the moon. It can no longer be doubted, therefore, that Jupiter and Saturn are reciprocally attracted by their refpective fatellites; and that the fun itfelf is fubject to the attraction of the planets, though this attractive power be exceedingly fmall.

This is the origin of the fyftem of univerfal attraction; in which it is maintained, and with good reafon, that not only does the fun attract the planets, but is reciprocally attracted by each of them ; nay, that all the planets exert their attractive power upon each other. The earth, then, is attracted, not only by the fun, but alfo by all the other planets, though their power be almoft imperceptible, compared to that of the fun.

You will eafily comprehend, that the motion of a planet, which is attracted not only by the fun, but by the other planets, in however fmall a degree, muft be fomewhat different from what it would have been, were it attracted by the fun only; and that, confequently, the attractions of the other planets muft caufe fome fmall derangement of that motion. Now thefe derangements are, likewife, confirmed by experience ; and this has carried the fyftem of univerfal attraction to the higheft poffible degree of certainty, fo that no one now prefumes to difpute it's truth.

I muft likewife remark, that comets, too, are fubject to this law; that they are principally attracted by the fun, whofe action regulates their motion; but that they, likewife, feel the attractive power of all the planets, efpecially when they are not very diftant from them. It is a general rule, as we fhall fee afterwards, that the attraction of all the heavenly bodies diminifhes in proportion to the diftance, and increafes in proportion to the nearnefs. Now, comets, likewife, are endowed with a power, by which other bodies are attracted toward them, and fo much the more fenfibly, as they approach nearer. When, therefore, a comet paffes fomewhat more clofely to a planet, it may derange the motion of that planet by it's attractive power ; and it's own will likewife be difturbed by that of the planet. Thefe confequences are verified by real obfervation.

Examples might be adduced to prove, that the motion of a comet has been deranged by the attraction of the planets, near which it happened to pafs,*

* The comet of 1682, which fhould have re-appeared in 1757 , underwent, from the attractive powers of Jupiter and Saturn, near which it paffed, a confiderable derangement, which retarded it's appearance nearly two years. Mr. Clairaut calculated, theoretically, the perturbations which it's motion muft have fuffered, and predicted the return of that comet, with a degree of exactnefs, which conftitutes a convincing proof in favour of the fyttem of gravitation. There was, however, an error of two months. But Mr. de la Place has fince demonfrated, that it would have been much lefs, had we then been able to calculate the perturbations of Jupiter and Saturn, with as much exactnefs as it now can be done. $-F$. E.

VoL. I.
P
and that the motion of the earth, and of the other planets, has already undergone fome derangement, from the attraction of comets.

The fixed ftars being bodies fimilar to the fun, are likewife endowed, no doubt, with an attractive power, but their enormous diftance prevents our feeling any fenfible effect from it.
$5^{\text {th }}$ Sept. $1 ; 60$.

LETTER LIV.

Different Sentiments of Pbilofophers, refpecting univerfal Gravitation. The Attractionits.

IT is eftablifhed, then, by reafons which cannot be controverted, that an univerfal gravitation perwades all the heavenly bodies, by which they are attracted toward each other ; and that this power is greater in proportion to their proximity.

This fact is inconteftable, but it has been made a queftion, Whether we ought to give it the name of impulfion, or attraction? The name, undoubtedly, is a matter of indifference, as the effect is the fame. The aftronomer, accordingly, attentive only to the effect of this power, gives himfelf little trouble to determine, whether the heavenly bodies are impelled toward each other, or whether they mutually attract one another : and the perfon, who examines the phenomena only, is unconcerned, whether the earth at-
tracts badies, or whether they are impelled toward it, by fome invifible caufe.

But, in attempting to dive into the myfteries of nature, it is of importance to know, if the heavenly bodies act upon each other by impulfion, or by attraction; if a certain fubtile invifible matter impels them toward each other, or if they are endowed with a fecret, or occult, quality, by which they are mutually attracted? On this queftion philofophers are divided. Some are of opinion, that this phenomenon is analogous to an impulfon; others maintain, with Nerwton, and the Englifh in general, that it confifts in attraction.

It muft be obferved, that the terms attract, and draw, are not perfectly fynonymous; that, accordingly, it is not to be fuppofed, there is an intermediate body between the fun and the earth.

The Englifh, and thofe who have adopted the fame opinion, explain it in this manner. They maintain, that the quality of mutual attraction is proper to all bodies; that it is as natural to them as magnitude, and that it is a fatisfying folution of the queftion, That the Creator willed this mutual attraction of bodies. Had there been but two bodies in the yniverfe, however remote from each other, they would have had, from the firft, a tendency toward each other, by means of which they would have, in time, approached and united. Hence it follows, that the greater a body is, the more confiderable is the attraction which it exerts upon others; for, as this
quality is effential to matter, the more of it any body contains, the greater is it's attractive force.

As the fun, therefore, confiderably furpaffes all the planets in magnitude, it's attractive force muft be much greater than theirs. They likewife remark, that the mafs of Jupiter, being much greater than that of the earth, the attractive force which he exercifes óver his fatellites, is much more powerful than that with which the earth acts upon the moon.

According to this fyftem, the gravity of bodies on the earth, is the refult of all the attractions exercifed upon them by the particles of our globe ; and if. it contained more matter than it actually does, it's attraction would become more powerful, and the gravity of bodies would be increafed. But if, on the contrary, the mafs of the earth fhould happen, by fome accident, to be diminifhed, it's attractive force, too, would be diminifhed, as well as the gravity of bodies, at it's furface.

It has been objected to thefe philofophers, that, on their hypothefis, any two bodies, whatever, at reft, for inftance, on a table, muft attract each other, and, confequently, approach. They admit the confequence, but they infift, that, in this cafe, the attraction would be too fmall to produce any fenfible effect; for, if the whole mafs of the earth, by it's attractive force, produces in every body, only that effect which we perceive in the weight of a body, a mafs many millions of times finaller than the earth, will produce an effect as many times fmaller.

It muft readily be admitted, that if the weight of a body became many millions of times lefs, the effect of gravity upon it muft be reduced to almoft nothing : attraction, therefore, cannot be perceptible, except in bodies of very great magnitude. The partizans of the fyftem of gravitation, therefore, are not vulnerable on this fide, and they produce, in fupport of their opinion, an experiment made in Peru, by the French .academicians, ${ }^{*}$ in which they perceived the effect of a flight attraction of a prodigious mountain on adjacent bodies. In adopting, therefore, the fyftem of attraction, we need to be under no apprehenfion of it's leading us to falfe confequences; and it has hitherto been always confirmed by the new facts which have been difcovered.

7 th September, 1760 .

LETTER LV.

Porwer by zobich the Heavenly Bodies are mutually attracted.

YOU are well acquainted with the property of the loadftone, that of attracting iron. You have feen fmall bits of iron and fteel, fuch as needles, when

* The academicians fent to Peru, in 1735 , to meafure a degree of the meridian, obferved a deviation of $8^{\prime \prime}$ in the plumb-line of their quadrant, occafioned by the attraction of Pichencha, a mountain near the place where they were making their obfervations. Dr. Mafielyne has more recently made oblervations for afcertaining the effect of the attraction of the mountains of Scotland, -F.E.
placed near the loadftone, move to it with a force proportioned to their proximity. As you fee nothing that impels them toward the loadfone, we fay that the loadfone attracts them, and this pheno; menon we call attraction. It cannot be doubted, however, that there is a very fubtile, though invifible, matter, which produces this effect, by actually im. pelling the iron toward the loadftone; but as modes of expreffion are regulated by appearances, it has become cuftomary to fay, that the loadfone attracts iron.

Though this phenomenon be peculiar to the loadftone and iron, it is perfectly adapted to convey an idea of the fignification of the word attraction, which philofophers fo frequently employ. They allege, then, that all bodies, in general, are endowed with a property fimilar to that of the loadifone, and that they all mutually attract ; but that this effect becomes not perceptible, unlefs they are very great, and cannot be perceived when they are fmall.

However great, for example, a ftone may be, it exercifes no fenfible attraction on other bodies adja* cent to it, becaufe it's power is too fmall. But if it's mafs were to increafe, and to become many thou. fands of times greater, it's effect would, at length, become perceptible. It has already been remarked, that, from actual obfervation, it was found, that a lofty mountain in Peru had produced attraction, though, indeed, in a very fmall degree, A moun* tain ftill greater, would produce, therefore, a more fenfible attraction; and a body much greater, fuch
as the whole globe, would attract others with a force proportionably greater; and this force would be precifely, the gravity with which we fee that they are actually impelled toward the earth.

According to this fyftem, then, the gravity which obliges all bodies to defcend, is nothing elfe but the refult of the attraction of the whole mafs of the earth. If this mafs were greater, or lefs, the gravity, or weight, of bodies would be proportionably greater or lefs. Hence it follows, that all the other great bodies in the univerfe, as the fun, the planets, and the moon, are endowed with a fimilar attractive power, but greater or lefs, in proportion as they themfelves are fo.

As the fun is many thoufands of times greater than the earth, his attractive power exceeds that of the earth, fo many thoufand times. The mafs of the moon is calculated to be forty times lefs than that of the earth : it will follow, that her attractive force is fo many times lefs; and the fame rule applies to all the heavenly bodies.
$9^{\text {th September, } 1760 .}$

LETTER LVI.

The Same Subject continued.

IN , virtue of the fyftem of attraction, or univerfal gravitation, each of the heavenly bodies attracts all the reft, and is reciprocally attracted by them.

In order to form a judgment of the force with which thefe bodies attract the others, we have only to confider two bodies, whofe attraction is mutual. And here we muft attend to three things ; firf, to the body attracting; fecondly, to the body attracted; and, finally, to their diftance; for on thefe three circumftances the attractive power depends.

Let A (plate III. fre. 4,) be the attracting body, and B the body attracted; both of them fpherical, the heavenly bodies being nearly of this figure. Take for their diftance that of their centres A and B, that is, the ftraight line A B. Now, with refpect to the mafs of the attracting body A, it muft be remarked, that the greater it is, the greater alfo will be it's power to attract the body B. Confequently, if A were twice as great as B, this laft would feel an attraction, twice as powerful, exercifed over it, by the other ; if it were three times as great, the effect would be triple, and fo on, always fuppofing the diftance of their centres to be the fame.

If, then, the earth contained more or le matter than it actually does, it would attrac̣t all :djacent bodies, with greater or lefs force, or their weight would be increafed or diminifhed. And, as the earth itfelf is attracted by the fun, the fame thing might be affirmed as to it, fhould the mafs of that luminary happen to change. As to the attracted body B, fuppofing the attracting body A, and the diftance $A B$, to continue the fame, it is to be remarked, that the greater or fmaller it's mafs is, the greater or lefs, alfo, is the power with which it is attracted to-

Vot.I.
Plate III.

S

ward A. Thus, if the body B were twice as great, it would be attracted toward A, with double the force; if three times greater, with triple the force, and fo on.

In order more clearly to elucidate this remark, we have only to fubflitute the earth in the place of the attracting body A ; then the force with which the body B is attracted, is nothing elfe but the weight of that body. Now, it is demonftrated, that the greater or fmaller the body B is, the greater or lefs, alio, is it's gravity; hence it follows, that while the attracting body A, and the diftance, A B continue the fame, the attraction which B feels, precifely follows the magnitude of that body. To exprefs this circumfance, mathematicians employ the term proportional; thus they fay, The body B is attracted by the body A, with a force proportional to it's mafs; the meaning of which is, that if the mafs of body B were twice, thrice, or four times greater, the attractive power would be precifely fo many times increafed. Thus, with refpect to the attracting body A, they fay, that the power which it exercifes over the body B, is proportional to it's mafs, fo long as that of B, and the diftance $\mathrm{A} B$ continue the fame.

I muft farther obferve, that when we fpeak of the quantity of the attracting body A , or of the attracted body B , we mean the quantity of matter which each contains, and not their magnitude merely. You will recollect, that bodies differ confiderably, in this refpect, and that there are fome, which, in a very fmall compafs, contain a great deal of matter, gold, for example,
example, while others, fuch as air, contain very little in a great fpace. When, therefore, we here fpeak of bodies, we are always to be underftood as referring to the quantity of matter which they contain: this is what we mean by their mais.

All that now remains is, to examine the third circumftance, namely, the diftance A B of the two bodies, fuppofing them to continue always the fame. It muft be obferved, that as the diftance A B increafes, the attraction diminifhes: and that as they approach nearer, it increares: but in conformity to a law, which it is not fo eafy to exprefs. When the diftance becomes twice as great, the force with which the body B is attracted toward the body A , will be twice two, or four times lefs; and for triple the diftance, the attraction becomes three times three, that is nine times lefs. If the diftance becomes four times greater, the power of attraction becomes four times four, that is fixteen times lefs, and fo on. Finally, for a diftance a hundred times greater, the power of attraction will be a hundred times a hundred, or ten thoufand times leís. From this it follows, that at very great diftances, it muft become altogether imperceptible. And reciprocally, when the diftance A B is very fmall, the attraction may be very confiderable, though the bodies may be of no great mag. nitude.

[^28]
LETTER LVII.

The fame Subject continued.

IHAVE now demonftrated, that when a body B is attracted by a body A, the power of attraction is proportional to the mafs of the attracting body A, and to that of the attracted body B; but it depends, to fuch a degree, on the diftance of thefe bodies, that if it fhould become twice, thrice, four or five times greater, the power of àttraction would become four, nine, fixteen, or twenty-five times lefs.

In order to afcertain the rule of thefe quantities, we muft multiply, into itfelf, the number which marks how many times the diftance is increafed, and the product will fhew how many times lefs the power of attraction has become. To put this rule in it's cleareft light, it muft be obferved, that when we multiply a number into itfelf, the product, refulting from it, is called it's fquare. Thus, to find thefe fquares, we muft multiply the numbers by themfelves, as below.

It is clear, from this laft example, that the fquare of number 12 is 144 ; and if you wifh to know the fquare of any number whatever, fay 25^{8}, you muft multiply that number by itfelf, as in the following feparation:

258
25^{8}
2064
1290
516
66564

From which we fee, that the fquare of 258 is $66_{5} 64$; and the fquares, of all numbers whatever, may be calculated in like manner.

As the diftance of bodies, then, muft be multiplied by itfelf, it is evident, that the power of attraction diminifhes, as much as the fquare of the diftance increafes : or, that the fquare of the diftance becomes as many times greater, as the power of attraction is diminifhed.

In treating fubjects of this nature, mathematicians employ expreffions, whofe fignification it is proper you fhould know, becaufe they fometimes occur in the courfe of converfation. If the attractive power increafed in proportion to the fquare of the diftance, we would call it proportionally to the fquare of the diftance; but as the direct contrary takes place, and as the attractive power diminifhes as the fquare of the diftance increafes, we employ the term recipro
cally,
cally, to exprefs this contrariety, faying, that the power is reciprocally proportional to the fquare of the diftance.* It is a geometrical mode of expreffion, the meaning of which you perfectly comprehend, and it refers to what I have juft been attempting to explain.

In order to judge aright of the power which one body exercifes over another, you have only to remark, that this power is, firft of all, proportional to the mafs of the attracting body: then, to that of the body attracted; and finally, reciprocally to the fquare of their diftance. Hence, it is evident, that though the earth, and the other planets, are likewife attracted toward the fixed ftars, this power muft be imperceptible, on account of their prodigious diftance.

Suppofing, therefore, the mafs of a fixed ftar to be equal to that of the fun, at equal diftances, the earth would be attracted toward it, with a force as great as toward the fun ; but as the diftance of the fixed ftar is 400,000 times greater than that of the fun, the fquare of this number being $160,000,000,000$, that is, a hundred and fixty thoufand millions, the power with which it acts upon our globe, is a hundred and fixty thoufand millions of times lefs than that of the fun; and, confequently, too feeble to produce any perceptible effect. For this reafon, the attractive power of the fixed ftars does not at all affect the earth's motion, nor that of the planets and the

[^29]moon; but it is that of the fun which chiefly regulates their motions, becaufe his mafs exceeds many thoufands of times the mafs of each planet.

When, however, two planets approach, fo that their diftance becomes lefs than that of the fun, their attractive power increafes, and may become fufficiently perceptible to derange their motion. : Such derangement has, in fact, been obferved; and confitutes an irrefiftible proof of the fyftem of univerfal gravitation. Accordingly, when a comet approaches very near to a planet, the motion of this laft may be confiderably affected by it. .

13th September, 1760 .

> LETTER LVIII.

> Motion of the beavenly Bodics. Method of determining it by the Laws of univerfal Gravitation.

FROM what has been faid, refpecting the power by which all the heavenly bodies mutually attract each other, proportionally to their mafs and diftance, you are enabled to comprehend, how their motions may be determined, and the real place of each body, at any given time, accurately affigned.

In this aftronomy confifts; the object of which is an exact knowledge of the motions of the heavenly bodies, in order to be able to determine, for every inftant of time, whether paft or to come, the place in which each of them muft be, and in what place of
the heavens it muft appear, whether viewed from the earth, or any other point whatever of the univerfe.

The fcience which treats of motion in general, is named mechanics, or dynamics. It's object is to determine the motion of all bodies whatever, animated by whatever power. This fcience conftitutes one of the principal branches of mathematics ; and thofe who apply to it, exert all their efforts to carry mechanics to the higheft poffible degree of perfection. The fubjects about which this fcience is converfant, are, however, fo intricate, that there is hitherto no great ground of boafting of our progrefs in the inveftigation of them ; and we muft reft fatisfied with advancing ftep by ftep. Not many years are elapfed fince we began to make any progrefs at all in this career, and what has been done is chiefly to be afcribed to the academy of fciences at Paris, which propofes annual prizes to the beft proficients in the profecution of this fcience.

The greateft dificulty arifes from the number of powers which act upon the heavenly bodies. If each of thefe were attracted toward only one fingle point, there would be very little difficulty in the way; and the great Newoton, who died in 1728, was the firft who gave a complete demonftration of the motion of two bodies which have a mutual attraction, in conformity to the law which I have laid down. In virtue of this law, were the earth attracted toward the fun only, we fhould be able perfectly, without refearch, to determine it's motion. The fame thing would apply to the other planets, Saturn, Jupiter;

Mars, Venus, and Mercury, if they were attracted only by the fun. But the earth being attracted, not only by him, but by all the other heavenly bodies, the queftion becomes infinitely more complex and difficult, from the great diverfity of powers to which we muft pay attention.* You may neglect, however, the powers with which it is attracted toward the fixed ftars, becaufe, however enormous their maffes may be, they are fo prodigioully diftant, that the power which they exercife upon the earth, may be confidered as juft nothing.

The motion of the earth, therefore, and of the other planets, will always be as perfectly the fame, as if the fixed ftars did not exif. Excepting, then, the power of the fun, we have only to confider the power with which the planets mutually attract each other. Now, thefe powers are extremely fmall, compared to thofe by which each planet is attracted toward the fun, becaufe the mafs of the fun is much greater than that of eacin planet.

As, however, thefe powers increafe according as the diftances diminifh, fo that a power four times greater correfponds to a diftance twice lefs; and a
> * They are ufually combined by three and three; that is, the effect refulting from the attraction of two bodies upon a third is fought. This celebrated problem, known by the name of the problem of three bodies, has been an object of the refearches of all the great geometricians of our age; and though it has hitherto been refolved only by an approximation to the truth, the moft fortunate applications have, however, been made, fuch as the theory of the moon, that of Jupiter, of Saturn, \&c.-F. E.
power nine times lefs correfponds to a diftance three times greater, and fo on, according to the fquares of the numbers, as I explained the fubject in the preceding letter, it might be poffible for two planets to approach fo near, that their attractive power fhould become equal to that of the fun, nay, greatly exceed it.

Fortunately, this never takes place in our fyftem, and the planets always remain at fuch a diftance from each other, that their attractive power is ever incomparably fmaller than that of the fun. For this reafon, without extending our views beyond what is thus certainly known, we may confider every planet as attracted only by the power of the fun, and by that it is eafy to determine it's motion. This, however, can take place, only when we are difpofed to reft fatisfied with a refult near the truth ; for if we wifl to have more exact information, we muft attend to thofe feebler powers with which the planets act upon each. other ; powers which really produce the little irregularities clearly obferved by aftronomers; and to the attainment of the perfect know. ledge of thefe, is directed all the fagacity of both aftronomers and geometricians.
ifth September, i76q.

LETTER LIX.

Syjten of the Univerfe.

IN order the more clearly to elucidate what I have been advancing, refpecting the motion of the heavenly bodies, and the powers which produce it, permit me to prefent to you, (plate IV. fig. 1.) the fyftem of the univerfe, or a defcription of the heavenly bodies which compofe it.

We muft, firft of all, obferve, that the fixed fars are bodies entirely fimilar to the fun, and luminous of themfelves; that they are at a very great diftance from that luminary ; and alfo very diftant from each other, and that every one of them is, perhaps, of equal magnitude with the fun. You are already informed, that the fixed ftar neareft to us, is at leaft 400,000 times more diftant than the fun. Each of the fixed ftars feems defigned to communicate light and heat, to a certain number of opaque bodies, fimilar to our earth, and, undoubtedly, inhabited likewife, placed near them, but which we cannot fee, on account of their prodigious diftance.

Though it is impoffrble to afcertain this by actual obfervations, we muf conclude it, from their ana: logy to the fun, who ferves to warm and to il^{k}. nate the earth and the other planets. We kno., particularly, fix of thefe bodies; they are not in a ftate of reft, but each of them moves round the fun, in the direction of a curve line, fomewhat different

Fig. 1.

from a circle, and which is called the planet's orbit. The fun himfelf is, nearly, in a fate of reft, as well as all the fixed ftars; the motion which they appear to have, being entirely owing to that of the earth.

I have, accordingly, reprefented on the annexed fheet, what is called the folar fyitem, which contains all the opaque bodies that move round the fun, and derive from him all the benefits which he imparts to us. This fign (atate IV. fig. ı.) reprefents the fun at reft. You fee, befides, fix concentric circles, reprefenting the orbits defcribed by the planets in their motion round him.

That neareft to the fun is Mercury, marked by the fign $\stackrel{\psi}{+}$, and the black dot you fee in the orbit reprefents the body of Mercury, who performs his revolution round the fun in about 88 days.

Next comes Venus, marked by q, who completes a revolution round the fun in feven months nearly.

The third circle is the orbit of the earth, marked by the fign δ, and which completes a revolution round the fun in a year. We have no other meaning, in truth, to the word year, but the time employed by the earth in performing a revolution round the fun; and the duration of the common year nearly approaches to this folar year.

But while the earth is moving round the fun, there is another body moving round the earth, and keeping the direction of it's orbit ; this is the moon, whofe own circle, or orbit, is marked by D.

The two firft planets, Mercury and Venus, have
no vifible bodies which attend them; neither has Mars of , which is the fourth, and performs his revo: lution in about two years.

The fifth circle is the orbit of Jupiter, marked by 4 , who performs his revolution in twelve years nearly. Round him move four fatellites, reprefented in the plate, with their orbits, and marked by the figures $1,2,3,4$.

Finally, the fixth and laft circle is the orbit of Sa turn, marked thus, ζ, who employs almoft thirty years in performing one revolution round the fun, This planet is attended, in his courfe, by five fatelIites, marked by the figures $1,2,3,4,5$. Thus, then, the folar fyftem confifts of fix primary planets, Mercury $¥$, Venus + , the Earth 。, Mars σ, Jupiter 4, Saturn ζ, and ten fecondary planets or fatellites, namely, the moon, the four attendants of Jupiter, and the five of Saturn.*
> * To this enumeration muft, now be added, the planet difcovered at Bath the 17 th of March, 1781 , by Mr. Herfchel, and taken at firft for a comet. It is more diftant from the fun than Saturn, and it's orbit muft be reprefented by a feventh circle, circumfcribing all the others. The period of it's revolution is about 83 years. 'Iables of it's motion have been confiructed, which reprefent already the obfervations with an exactnefs, that announces the perfection both of the inftruments, and of the method of calculation.

> It is admitted, that this ftar was feen in 1756 , in the month of September, by Mr. Mayer, of Gottingen; but that aftronomer took it for a fixed ftar, and having obferved it only once, he could not afcertain it's motion: his determination agrecs in other refpects with the place which the tables affign to the planet of Mr .

This fyftem contains, befides, feveral comets, the number of which is unknown. The figure on the plate reprefents one of them, whofe orbit difers from that of the planets, becaufe it is drawn out into ex treme length, fo that a comet fometimes approaches very near to the fun, and fometimes removes to fuch an immenfe diffance, as entirely to difappear, Of comets it has been remarked, that one finifines his revolutions in his orbit, in about fixty years; this is the one that was vifible laft ycar: As to the other comets, it is certain, that they employ feveral centuries in performing one revolution in their orbits; and as, in paft ages, no exact obfervations were made of them, we are totally in the dark with refpect to their return. Of thefe, then, confifts the folar fyftem ; and, moft probably, every fixed far has one fimilar to it.*

> 17th Seftember, 1760.

Herfchei, for that epoch. It bears the name of the perfon who difcovered it.

The mean diftances of the planets from the fun, may be thus refpectively expreffed: that of Mercury by 4 , that of Venus by 7 , that of the earth by 10 , that of Mars by 15 , that of Jupiter by 5^{2}, that of Saturn by 95 , and, finally, that of the planet Merfcheb (a) by 19t-F. E.

* Aftronomers expect about 1790 the comet obferved iu 1531 , and in 166_{1}, which they believe to be the fame ftar, and the period of which appears to be about 130 years.-F.E.
(a) In compliment to his gratron, King George III. Mr. Herfchel named his recently difcovered piantet Grorgium Sidus. The republican Condorcet, in contenp: of Wints, gives it the name of the Difcoverar. $-E, E$.

LETTER LX.

The fame Subject continued.

IN addition to what I have faid refpecting the folar fyitem, I muft communicate fome obfervations for the explanation of the figures. And, firft, it muft be remarked, that the lines which mark the paths in which the planets move, have no real exiftence in the heavens, as the whole.immenfity of face in which they move is a vacuum, or rather filled with that fubtile matter which we call the etber, and which I have already fo often mentioned.

Again, the orbits of the planets are not all in the fame plane, as the figure prefents them: but if the orbit which the earth defcribes round the fun, is properly reprefented on the paper, we muft imagine the orbits of the five other planets to be partly elevated, and partly deprefied, with reference to it; or, that the orbit of each planet bears upon it an oblique direction, making an interfection with the paper, under a certain angle, which it is impoffible to reprefent in a figure drawn upon a plane.

Farther, the orbits of the planets are not circles, as the figure appears to indicate, but rather fomewhat oval, one more, another lefs fo; no one, however, recedes very confiderably from the circular form. The orbit of Venus is almoft a perfect circle; but thofe of the other planets are more or lefs ex-
tended lengthwife, fo that thefe planets are fometimes nearer to the fun, fometimes farther off.

The orbits of comets are particularly diftinguifhable, being greatly extended in length, as I have reprefented it in the figure. As to the moon, and the fatellites of Jupiter and Saturn, their orbits, too, are nearly circular.

Neither muft we conceive them as moving in one and the fame direction, as they appear on the plane of the paper ; for they do not remain in the fame place, but are themfelves carried round the fun along with the primary planet to which they belong. It is thus we muft underfand the lines reprefented in the figure. Imagination muit fupply what it is impoffible, on a plane furface, accurately to exhibit.

You are now enabled to comprehend, with eafe, what the late Mr. de Fontenelle meant to difplay, in his book on the plurality of worlds. The earth, with it's inhabitants, is fometimes denominated a world; and every planet, nay, every one of the fatellites, has an equal right to the fame appellation, it being highly probable, that each of thefe bodies is inhabited as well as the earth.

There are fixteen worlds, then, in the folar fyfem alone. And every fixed ftar being a fun, round which a certain number of planets perform their revolutions, and of which fome have, undoubtedly, their fatellites, we have an almoft infinite number of worlds, fimilar to our earth, confidering, that the number of ftars, perceptible to the unafifted eye,
exceeds fome thoufands, and that the telefcope difcovers to us an incomparably greater number.

If it is meant to comprehend under the name of world the fun, with the planets and their fatellites, and which derive heat and light from him, we fhall have as many worlds as there are fixed ftars. But if by the term world, we underfand the earth, with all the heavenly bodies, or all the beings which were created at once, it is clear that there can be but one world, to which we refer every thing that exifts. It is in this fenfe the term world is employed in philofophy, particularly in metaphyfics; it is in this fenfe we fay, that there is but one world, the affemblage of all created beings, paft, as well as prefent, and future, whofe exiftence is fubject to general laws.

When, therefore, philofophers difpute, whether our world is the beft or not, they proceed on the fuppofition of a plurality of worlds ; and fome maintain, that the one which exifts, is the beft of all thofe which could have exifted. They confider the Deity as an architect, who, intending to create this world, traced feveral different plans, of which he felected the beft, or that in which the greateft perfections were all combined, in the higheft degree, and executed it in preference to all the others.

But the great quantity of evil that prevails, and is diffufed over the furface of our globe, and which flows from the wickednefs of man, fuggefts an important enquiry, namely, Whether it would have been poffible to create a world, wholly exempted from thefe evils?

In my opinion, a diftinction muft be carefully made, between the plans of a world, which fhould contain corporeal fubftances only, and thofe of another world, which fhould contain beings intelligent and free. In the former cafe, the choice of the beft, would be involved in very little difificulty; but in the other, where beings intelligent and free conftitute the principal part of the world, the determination of what is beft is infinitely beyond our capacity; and even the wickednefs of free agents may contribute to the perfection of the world in a manner which we are unable to comprehend.

It would appear, that philofophers have not been fufficiently, attentive to this diftincion, however effential it may be. But I am too fenfible of my own incapacity, to enter any deeper into this dificult queftion.

19th Septcmber, 1760 .

LETTER LXI.

> Sinall Irregularities in the Motions of the Planets, caused by their mutual Attraction.

IN order to determine the motion of the bodies which compofe the folar fyfem, it is neceffary to diftinguifh the primary planets, which are Mercury, Venus, the Earth, Mars, Jupiter, and Saturn, from their fatellites, namely, the moon, the four fatellites of Jupiter, and the five of Saturn.

It has been explained to you, that thefe fix planets are principally attracted toward the fun, or, that the force with which they are impelled toward him, is incomparably greater, than the powers which they exert one upon another, becaufe his mafs is incomparably greater than that of the planets, and becaufe they never fufficiently approach to each other to render their reciprocal attraction very confiderable. Were they attracted only toward the fun, their motion would be fufficiently regular, and eafily determined. But the feebler powers of which I have been fpeaking, occafion fome flight irregularities in their motion, which aftronomers are eager to difcover, and which geometricians endeavour to deter: mine, on the principles of motion.

An important queftion is here agitated, namely; The powers which act upon a body being known, how to find the motion of that body? Now, upon the principles above laid down, we are acquainted with the powers, to the influence of which every planet is fubjected. Thus the motion of the earth is fomewhat affected; firf, by the attraction of Venus, which fometimes paffes very near it; and, fecondly, by that of Jupiter, which, on account of the prodigious mafs of this planet, becomes confiderable, though he be always at a great diffance. The mafs of Mars is too fmall to produce any perceptible effect, though he is fometimes very near us; and Saturn, though his mafs be the greateft, next to that of Jupiter, is too diftant.

The moon, though her mafs be very fmall, produces,
duces, however, fome derangement, from her being very near the earth. The comet, which appeared laft year, was feven times nearer to us than the fun, when his diftance was fmalleft ; there is a great degree of probability, therefore, that it may have deranged the earth's motion, efpecially if his mafs was confiderable, a circumftance with which we are not acquainted. If this comet were as great as the earth, the effect muft have been very, confiderable ; but it's apparent fmallnefs induces me to believe, that it's mafs is much lefs than that of the earth, and, confequently, it's effect muft have been proportionally lefs. When we faw this comet, however, it had got to a great diffance; at the time when it was neareft, it was invifible to us, but it muft have appeared very brilliant to our antipodes.

What has been faid, refpecting the derangements occafioned in the earth's motion, takes place likewife in the other planets, regard being had to their mafs, and to their proximity. As to the moon, and the other fecondary planets, the principle of their motion is fomewhat different. The moon is fo near the earth, that the attraction fhe feels from hence greatly exceeds that of the fun, though the mafs of this luminary be many thoufands of-times greater than that of the earth. Hence it is, that the motion of the moon follows that of the earth, and that fhe remains, as it were, attached to it, which makes the moon to be confidered as a fatellite to our planet.

Had the moon been placed much farther from us, and had the been attracted lefs toward the earth than
toward the fun, fhe would have become a primary planet, and performed her own revolutions round the fun; but fhe is 300 times nearer to us than fhe is to the fun; hence it is evident; that he muft exercife a much feebler influence upon her than the earth does. The moon being principally attracted by two bodies, the fun and the earth, it is evident that the determination of her motion, muft be much more difficult than that of the primary planets, which are fubject to the attraction of the fun only, excepting the flight derangements which have been mentioned. The motion of the moon has, accordingly; in all ages, greatly embarraffed philofophers; and never have they been able to afcertain, for any fu: ture given time, the exact place of the moon in the heavens.

You perfectly comprehend, that in order to predict an eclipre, whether of the moon or of the fun, we murt be able accurately to afcertain the moon's place. Now, in calculating eclipfes, formerly, there was frequently a miftake of an hour or more: the eclipfe actually taking place an hour earlier or later than the calculation. Whatever pains the ancient aftronomers took to determine the moon's motion, they were always very wide of the truth. It was not till the great Newton difcovered the real powers which act upon the moon, that we began to approach nearer and nearer to truth, after having furmounted many obftacles which retarded our progrefs.

I too have employed much time and attention on the fubject ; and Mr. Meyer, of Gottingen, purfuing
the
the track which I had opened, has arrived at a degree of precifion, beyond which it is perhaps impoffible to go. Not much more, then, than ten years have elapred fince we could boaft 'of any thing like accurate knowledge of the moon's motion. Since that time we are able to calculate eclipfes fo exactly, as not to make the miftake of a fingle minute, whereas, before, there was frequently the difference of eight minutes, and more. To analyfis, then, we are indebted for this important difcovery, the fource of unfpeakable advantages, not to the aftronomer only, but likewife to the geographer, and the navigator.
$23 d$ Septenber, 1760.

LETTER LXII.

> Defcription of the Flux and Reflux of the Sea.

THE attractive power of the heavenly bodies ex: tends, not only to the mafs of the earth, but to all the parts of which it is compofed. Thus all the bodies, which we fee on the furface of the earth, are attracted, not only toward the earth itfelf, from which refults their gravity, and the weight of every one in particular, but, likewife, toward the fun, and toward all the other heavenly bodies, and that more or lefs, according to the mafs of thefe bodies and their diftance.

Now, it is evident, that the force with which a body,
body, fay a fone, is attracted toward the earth, muft be incomparably greater than that with which the fame body is attracted koward the fun, the other planets, and the moon, becaufe of their great diftance. Such a body, being at a diftance from the centre of the earth, equal to a radius of this globe, is 60 times farther from the moon. Though, then, the mals of the moon were equal to that of the earth, the attraction toward the moon would be 60 times 60 , that is 3600 times lefs than the attraction toward the earth, or, the gravity of the body. But, the mafs of the moon is about 70 times lefs than that of the earth; hence the attractive power of the moon becomes ftill 70 times 3600 , that is, 252,000 times lefs than the gravity of the body.

Again, though the fun be many thoufands of times greater than the earth, he is about 24,000 times more diffant from us, than the centre of the earth; and for this reafon, the attraction of the fun upon a ftone is extremely fmall, compared to it's gravity. Hence you fee, that the gravity of terreftrial bodies, which is nothing elfe but the force with which they are attracted toward the earth, cannot be perceptibly affected by the attraction of the heavenly bodies.

Though this attraction, however, be very inconfiderable, there refults from it a remarkable phenomenon, which long puzzled philofophers; I mean the flux and the reflux of the fea. It occurs fo frequently, even in common converfation, that it is almoft a matter of neceffity to underftand it. For this reafon, I propofe to explain more minutely, this fin-
gular phenomenon, and to unfold the caufes which produce it.

I begin, then, with the defcription of the wellknown phenomenon, of the flux and reflux of the fea. Hardly any one is ignorant, that by far the greateft part of the furface of our globle is covered with a mafs of water, called the Sea; or the Ocean. This immenfe fluid mafs is very different from rivers and lakes, which, according to the different feafons of the year, contain fometimes lefs water, fometimes, more, whereas, in the fea, the quantity of water, at all times, continues nearly the fame. It is, however, obferved, that the water of the fea rifes and falls alternately, with wonderful regularity, twice every twenty-four hours.

If, for inftance, in a harbour, the water is now at it's greateft height, it will prefently begin to fubfide, and this decreafe continues for fix hours, at the end of which, it's depth will be at the loweft. It then begins again to rife, and the increafe, likewife, lafts fix hours, when it is again at it's greateft depth. It immediately begins again to fall for fix hours, and then rifes as many, fo that in the fpace of about 24 hours, the water rifes and falls twice; and arrives, alternately, at it's greateft and leart depth.

It is this alternate increafe, and diminution of the water of the fea, which we call it's flux and reflux, or it's flowing and ebbing : and more particularly, the flux denotes the time, during which it encreafes or rifes, and the reflux, the time of it's decreafe or falling. The flux and reflux together, likewife, go by
the name of tide. This alternation, then, is to be the fubject of our prefent difquifition.

It is, firft of all, to be remarked, that the difference between rifing and falling, keeps pace with the variations of the moon. At full, and new moon, the water rifes higher than at the quarters: and about the time of the vernal, and autumnal equinoxes, in the months of March and September, this alternate motion of the fea is moft confiderable. A great difference is, likewife, obferved, according to the fituation of the coafts. The flux, in fome places, is newer more than a few feet, while, in others, the rife is 40 feet and upwards. Such are the tides in the ports of St. Malo, in France, and of Brifol, in England.

It is farther to be remarked, that this phenomenon is perceptible, chiefly, in the ocean, where there is a vaft extent of water, and that in feas bounded and confined, fuch as the Baltic, and the Mediterranean, it is much lefs confiderable, The interval, from the flux to the fucceeding reflux, is not exactly fix hours, but about I iminutes more; fo that the fame changes do not take place, the day after, at the fame hour, but fall out about three quarters of an hour later : fo that a revolution of 30 days is requifite, to bring them round to the fame hour ; now, this is precifely the period of one revolution of the moon, or the interval, between one new moon, and that which immediately follows.

$$
26 t b \text { September, } 1760
$$

LETTER LXIII.

> Different Opinions of Philofopliers refpecting the Flus and Reflux of the Sca.

WHEN the water of the fea rifes at any place, we' are not to imagine that it fwells from any internal caufe, as milk does when put in a veffel upon. the fire. The elevation of the fea is produced by a real increafe of water flowing hither from fome other place. It is a real current which is very perceptible at fea, conveying the waters toward the place where the flux is.

In order to have a clearer comprehenfion of this, you muft confider that in the vaft extent of the ocean there are always places where the water is low, while it is high at others ; and that it is conveyed from the former to the latter. When the water rifes at any place, there is always a current, conveying it from other places, where it is of courfe at that time low. It is an error, therefore, to imagine, with fome authors, that during the flux of the fea the total mafs. of water becomes greater, and that it diminifhes during the reflux. The entire mafs or bulk of water remains ever the fame; but it is fubject to a perpetual ofcillation, by which the water is alternately tranfported from certain regions to others ; and when the water is high at any place, it is of courfe low fomewhere elfe, fo that the increafe at places where it is

Vol. I.
R
high
high is precifely equal to the decreafe at thofe where it is low.

Such are the phenomena of the flux and reflux of the fea, the caufe of which ancient philofophers endeavoured to difcover, but in vain. Kopler, in other refpects a great aftronoiner, and the ornament of Germany, believed that the earth, as well as all the heavenly bodies, was a real living animal, and confidered the flux and reffux of the fea as the effect of it's refpiration. According to this philofopher, men and beafts were juft like infects feeding on the back of the huge animal. You will hardly expect I fhould go into the refutation of an opinion fo ridiculous.

Defcartes, that great French philofopher, endeavoured to introduce a more rational philofophy; and remarked, that the flux and reflux of the fea was principally regulated by the moon's motion; which was indeed a very important difcovery, though the ancients had already fufpected a connection between thefe two phenomena. For if high water or the top of the flux happen to-day at noon, it will be low water at 11 minutes after fix in the evening: it will rife till 22 minutes after midnight; and the next low water will be 33 minutes after fix in the morning of the day after ; and the enfuing high water, or flux, will be three quarters of an hour after noon: fo that from one day to another the fame tides are later by three quarters of an hour.

And as the fame thing precifely takes place in the moon's motion, which rifes always three quarters of
an hour later than the preceding day, it was prefumable that the tides followed the courfe of the moon. If at any given place, for example, on the day of new moon, high water happen to be at three of the clock, afternoon, you could reft affured, that ever after, on the firft day of the moon, the flux would invariably be at the height at three o'clock afternoon, and that every following day it would fall later by three quarters of an hour.

Again, not only the time when every flux and reflux happen exactly follows the moon, but the ftrength of the tides, which is variable, appears fill to depend on the pofition of the moon. They are every where ftronger after the new and full moon, that is, at thefe periods the elevation of the water is greater than at other times; and after the firft and laft quarters, the elevation of the water, during the flux, is fmaller. This wonderful harmony between the tides, and the motion of the moon, was, undoubtedly, fufficient ground to conclude, that the chief caufe of the flux and reflux of the fea was to be fought for in the action of the moon.

Defcartes accordingly believed, that the moon, in paffing over us, preffed the atmofphere, or the air which furrounds the earth, and that the air preffing on the water, in it's turn, forced it to fubfide. Had this been the cafe, the water muft have been depreffed at the places over which the moon was, and that the fame effect fhould be produced 12 hours after, in the enfuing tide; which, however, does not happen. Befides the moon is too diftant from the earth,
and the atmofphere too low to be imprefied by the moon; and admitting that the moon, or any other great body, were to pafs along the atmofphere, it would be very far from undergoing any preffure from it, and ftill lefs would the fea feel this pretended preffure.

This attempt of Defcartes to explain the flux and reflux of the fea, has therefore failed; but the connection of this phenomenon with the moon's motion, which this philofopher has fo clearly unfolded, enabled his fucceffors to employ the application of their refearches with more fuccefs. This fhall be the fubject of fome following letters.
3oth September, 1760.

LETTER LXIV.

Explanation of the Flux and Rcfux, from the attraclive Porver of the Moon.

DESCARTES's method of explaining the flux and reflux of the fea, by the preffure of the moon upon our atmofphere, not liaving fucceeded, it was reafonable to look for the caufe of it in the attraction which the moon exercifes upon the earth, and confequently alfo upon the fea.

The attractive power of the heavenly bodies having been already fufficiently eftablifhed, by fo many other phenomena, as I have fhewn, it could not be doubted that the flux and reflux of the fea muft be
an effect of it. As foon as it is demonftrated that the moon, as well as the other heavenly bodies, is endowed with the property of attracting all bodies, in the direct ratio of their mafs, and in the inverfe ratio of the fquare of their diftance, it is eafily comprehended that it's action muft extend to the fea; and the more fo, as you muft frequently have oiferved, that the fmalleft force is capable of agitating a fluid. All that remains, therefore, is to enquire, whether the attractive power of the moon, fuch as we fuppofe it, is capable of producing in the fea the agitation lnown to us by the name of flux and reflux.

Let the annexed figure (plate III. fig. 5.) reprefent the earth and the moon. A is the place where we fee the moon over the earth; B that which is directly oppofite, or the antipodes of A; and C is the centre of the earth. As the point A is nearer the moon than the point B, a body at A is more power.fully attracted toward the moon than a fimilar body at B. And if we fuppofe a third fimilar body to be placed at the centre of the earth C , it is evident that the body A will be more powerfully attracted toward the moon than the body C , and this laft than the body B , becaufe the body A is nearer to the moon, and the body B more remote than the body C . But fimilar bodies placed at E and F , are almoft as much attracted by the moon as that which is at the centre of the earth C , as they are all three nearly equi-dif. tant from the moon.

Hence we fee that bodies placed on the furface of R_{3}
the
the earth are not all equally attracted toward the moon. This inequality of attraction depends on the inequality of their diftance from the centre of the moon L, fo that a body is fo much the more powerfully attracted by the moon, as it's diftance is lefs; and the contrary takes place accurding as the diftance is greater.

To thefe differences in the action of the moon on bodies differently fituated, we muft here chiefly pay attention; for if all bodies were equally attracted toward the moon, they would equally obcy this power, and no derangement could take place in their mutual fituation.

You can eafily form the idea of feveral carriages drawn along by powers perfectly equal; they will proceed on the road, always preferving the fame order, and the fame diftances; but as foon as fome of them advance more brifkly, and others more flowly, the order will be deranged. The fame thing takes place in the cafe of the different bodies which are attracted by the moon; if they all felt, in the fame degree, the action of that luminary, they would preferve the fame relative fituation, and we fhould perceive no change in them : but as foon as the force with which they are attracted toward the moon varies as to each of them, their order and their relative fituation neceffarily change, unlefs they are attached to each other by bands which that power is unable to burft afunder.

But this is not the cafe with the fea, as all the particles of a fluid are cafily feparated from each other,
and every one may obey the impreffions which it receives. It is evident, then, that when the powers which act on the different parts of the fea are not equal to one another, an agitation, or derangement, muft be the confequence.

We have juft feen that the different parts of the fea are attracted unequally by the moon, according as they are unequally diftant from her centre; the fea muft, therefore, be agitated by the force of the moon, which, continually changing her fituation, with refpect to the earth, and performing a revolution round it in about twenty-four hours and three quarters, makes the fea undergo the fame changes, and prefents the fame phenomena in the fame period of twenty-four hours and three quarters; the flux and reflux muft, therefore, be retarded from one day to another three quarters of an hour, which is confirmed by conftant experience.

It now remains that we fhew, How the alternate elevation and depreffion of the fea, which fucceed each other after an interval of fix hours and eleven minutes, refult from the inequality of the powers of the moon. This I propofe to examine in my next letter.
$4^{t h}$ October, ${ }_{7} 760$.

LETTER LXV.

The fame Subject continued.

YOU have feen that the moon caufes no alteration in the fate of the earth, but in fo far as fhe acts unequally on it's different parts. The reafon of it is, that if all it's parts equally felt the fame action, they would be equally attracted, and no change in their relative fituation would refult from it.

But a body being at A (plate III. fig. 5.) nearer the moon than the centre of the earth C , is more powerfully attracted to it than a body at C would be: it will approach it, then, with greater velocity than this laft: from hence it neceflarily follows, that the body A retires from the centre C, and approaches the moon: as if there were two chariots, the one at A, the other at C, and if the chariot A were drawn toward L with greater force than the chariot C , it would remove from C . It is thus that the power of the moon has a tendency to withdraw the point A from the centre C.

Now to remóve a body from the centre of the earth is to raife it: and the water at A being now the thing in queftion, it is certain that the force of the moon tends to raife the water which is at A , by a power equal to the excefs of the attraction toward the moon felt at A, above that felt at C. By this power, then, the moon raifes the waters of the earth which are immediately under her.
I.et us now, likewife, attend to a body at B , direaly oppofite to the point A; the centre of the earth C , more powcrfully attracted by the moon than the point B, will approach nearer to it, and this laf, fo to fpcal,, will remain behind, juft as a chariot, which was drawn more flowly than that which precedes it. The point B will confequently remove from the centre C , and rife; for to remove from the centre of the earth, and to rife, is one and the fame thing.

It is evident, therefore, that the power of the moon tends to raife the waters, not only at Λ, but likewife at B, the point diametrically oppofite, and that by a force equal to the difference of the attraction of the moon at B and at C , which is lefs at B than at C. Nows, thofe who are at A , have the moon directly above them, or in their zenith; and thofe who are at B fee nothing of the moon, becaufe fhe is then in a point of the heavens diametrically oppofite to their zenith, called Nadir.

Hence it appears, that at whatever part of the fea it may be, the water muff rife equally when the moon is in the zenith of that place, and in it's nadir, or, when the moon is at it's greateft elevation above the horizon, or at it's greateft depreffion under it. At the intermediate periods, when the moon is in the horizon, cither rifing or fetting, the exercifes no power capable of raifing the fea; a fmall contrary power tends even to make it fall.

According to this fyftem, at the place of the fea, -where the moon is in the zenith, it's power has a tendency
tendency to raife the waters; about fix hours after, when fhe has reached the horizon, her power has a tendency to make them fall. Twelve hours and twenty-two minutes after, the moon being then at the point moft diftant, under the horizon, fhe exercifes the fame power to raife the water ; and at the end of eighteen hours, thirty-three minutes, when fhe has got to the oppofite horizon, the waters are fallen: till at length, twenty-four hours and fortyfive minutes from the firft period, fhe returns to the zenith, raifing the water as on the preceding day: and this is confirmed by uniform experience.

This alternate elevation and depreffion of the fea, at intervals of fix hours and eleven minutes, having fuch a perfect conformity with the moon, leaves us no room to doubt that the flux and reflux of the fea are caufed by the attractive power of the moon.

It is a remarkable circumftance that fhe acts equally on the fea, in raifing it, whether fhe is at her greateft height above the horizon, or at the moft diftant point under it. This appeared at firft very ftrange to philofophers, who imagined that the moon muft produce, under the horizon, an effect contrary to that which fhe produces when in the zenith. But you fee clearly that the moon produces the fame effect in thefe two diametrically oppofite ppfitions, as I have demonftrated in the figure above referred to, that the effect of the moon is the fame at A and at B.

$$
\text { ;tb OcFober, } 1760 .
$$

LETTER LXVI.

The fame Subject continued.

FROM what has been faid refpecting the flux and reflux of the fea, you muft be fenfibie that the fyftem of Nerwton, which I have adopted, is directiy contrary to that of Defcartes. According to this laft, the moon exercifes a preffure, and the fea muft fubfide at places fituated directly under her; but, according to Nerwton, fhe acts by attraction, and forces the water to rife at thefe very places.

Experience, then, muft determine which of thefe two fyftems is to be received. No more is neceffary than to confult the obfervations made with refpect to the ocean, in order to fee whether the water rifes or falls when the moon is in the zenith. Recourfe has actually been had to this; but it is found that when the moon is at either the zenith, or nadir, of a given place, the water there is neither high nor low ; and that high water does not take place till fome hours after the moon has paffed the zenith.

From this circumfance, perfons who examine things fupericially, concluded at once, that neither of the fyftems was admifible ; and the Cartelians have taken advantage from it, prefuming, that if Newion's was rejected, that of Dcfiartes muft neceffarily be adopted, though the offervations referred to are as contrary to the fyftem of Dofrartes as they. appear to be to that of Necution.

But the fyitem of Defcartes is overturned by this fingle phenomenon, that the fea is always in the fame ftate after a period of twelve hours and twenty-two minutes, or that it's ftate is always the fame, whether the moon be above or below the horizon; and it is impoflible for it's fupporters to fhew how the moon, being over the heads of our antipodes, can produce the fame effect as when fhe is over ours. To this purpofe, fee plate III. fig. 6 .

Experience proves that the fate of the water at A is the fame, whether the moon be at M , the zenith of the point A, or at N, it's nadir, which is confequently the zenith of the antipodes at B . The effect, of the moon, then, on the water at A, is the fame in both cafes. But if the moon acted by preffure, according to Defcartes, it would follow, that when the moon is at \mathbb{M}, the water at A muft fall; and if he were at N , it is imponfle that the water at A fhould undergo the fame preffure.

In the fyitem of attracion, on the contrary, it is inconteftably certain, that the action of the moon muft be nearly the fame, whether that luminary be at M or at N ; and this is demonftrated by actual obfervation.

I muft here repeat a preceding explanation, becaufe it is a matter of the utmoft importance. When the moon is at \mathbb{M}, the point A is nearer it than the centre C ; it is, therefore, more powerfully attracted than the centre; the point A will remove from the centre, confcquently it will then rife: the moon being at M , has a tendency to raife the water at A .

Let us now fee what effect the moon, being at N , will produce, where fhe arrives in twelve hours and ${ }^{3}$ twenty-two minutes after the was at M. As the point A is more diftant from the moon at N than the centre C , it will be more feebly attracted; the centre C will advance with greater velocity toward N , than the point A ; the diftance A C will accordingly become greater ; the point A will, therefore, be more diftant from the centre C. But to be more difant from the centre of the earth is to rife, confequently the moon being at N , makes the point A to afcend, that is, fhe has a tendency to raife the water at A, as if the moon were at M.

But here experience prefents a very formidable objection; for it is obferved, that the moon being at M , or at N , the water is not then at it's greateft elevation at A. This does not take place till a confiderable time after, and thence fome have been induced to reject this explanation altogether. But you will eafily fee that their decifion is extremely precipitate.

I have not faid, that when the moon is at M or N , the water at A is at it's greateft height; I have only faid, that the power of the moon has then a tendency to make the water rife. But the water at A could not rife, unlefs it's quantity were increafed; and that increafe can be produced only by the flowing of the water from other parts, fome of them very diftant. A confiderable time, therefore, is requifite to the accumulation of a fufficient quantity of water; it is, then, very natural to fuppofe, that high water at A thould not take place for fome time after the moon
has paffed M or N . This obfervation, therefore, is fo far from overturning our fyftem, that it tends Rrongly to confirm it.

There is no room to doubt that the power which has a tendency to raife the fea, muft precede it's greatelt elevation, nay, that a confiderable time muft intervene, as the water muft flow thither from places very remote, that is, from places where the water muft be low, while it is high at A. If the water has to pafs through fraights, or has it's current otherwife obftructed, high water will be fill more retarded ;* and if, in the ocean, it is high water at A, two hours after the moon has pafled M or N , it will not be at the height, in narrow and bounded fcas, for three hours or more : and this perfectly agrees with daily obfervation.

11 th Ocioict, 1760 .

* It may be proper, in this place, to give a popular view of fo interefting a fubject as that of tides. Suppofe, therefore a ciftern of water communicates with another, alfo of water, and in the fame flate ; the furface of both will conftantly preferve, or endeavour to preferve, the fame level. But if one of the cifterns were fillel with oil, or any fuch light fluid, the furface would evidently rife above the level of the other; and the more fo, the greater was the depth of the oil. The fame confequeince would follow, if, by any caufe, the fpecific gravity of the water in one of the cifterns was diminifhed. And this is actually the effect which the moon and fun produce on the waters of the ocean; thole particles neareft thefe luminaries are inore attrafted by them than the particles at the centre, or at the extremities of the tranfverfe diameter, which are more altratted than the particles on the fartheft fide; and therefore, in both cafes, the tendency to the centre is diminifhed. Hence a protubciance will be formed on the nearer and farther

LETTER LXVII.

The fame Subject continued.

IT is no longer, then, a matter of doubt, that the flux and reflux of the fea is caufed by the attractive power of the moon. But there remains one dificulty more to be removed: Why is the motion of the fea much more confiderable at the time of new and full moon than at the other quarters? If the moon were nearer the earth when fhe is new, or full, than when fhe is in her quarters, there would be no difficulty in the queftion, as her proximity would increafe her power. But though the moon approaches the earth fometimes more, fometimes lefs,
fides of the globe, proportional to the depth of the oce:in. Bat this general fwell is never fuffered to attain it's juft elevation; for the neceffary motions are not fupported a fufficient length of time, and the impreffions foon give a contrary tendency. The flow oi the waters is moft obffrucied in narrow feas, which are remote from the great ocean. Hence the latenefs and irregularity of the tides in fuch feas. When a large river, or an arin of a fea, fiequently contracts and widens, it often happens that the tide, in puthing up, occafions a great fwell in the narrows, which produces a ftrong current, that continuing, after it's caufe has ceafed to operate, reduces the water below it's proper level, till a quaisitity is again accumulated, and repeats the fame efficts; and thus an ebb and flow may happen feveral times in the courfe of a day. This is particularly remarked in the river St. Lawrence, in North America.

A large lake cannot have any fenfible tides, for every portion of it's waters is almolt equally attracted by the fun or moon.
the difference is always too fmall to occafion a change fo confiderable in the flux and reflux of the fea.

Befides, this difference is not regulated by the new and full moon; and it may happen, that the moon, in the intermediate quarters, fhould be nearer to us than when fhe is new or full. We muft have recourfe, therefore, to another caufe capable of increafing the flux and reflux of the fea at the new and full moon, and of diminifhing it at the intermediate quarters.

The fyftem of attracion thews us, at firf, that it is the action of the fun which, joined to that of the moon, furnifies a complete folution of all the phenomena prefented to us by the flux and reflux of the fea. Indeed, all that I have faid refpecting the power which the moon exercifes on the fea, is equally applicable to the fun, whofe attractive power acts likewife unequally on all the parts of the earth, according as they are more or lefs remote from him. The attraction of the fun is even much more intenfe than that of the moon, as it chiefly regulates the motion of the earth, and carries it round it's orbit.

As to the motion which he communicates to the fea, it depends on the inequality of that action, with relation to the different points of the furface of the earth, which are more or lefs attracted toward the fun than it's centre, as I have already fhewed you, in explaining the effect of the moon. If all the parts of the earth were attracted equally, no change in their mutual fituation would take place. But though the power of the fun be much greater than that of
the moon, the inequality, with relation to different parts of the earth is, neverthelefs, fimaller, on account of the great diftance of the fun, which is 300 times farther from us than the moon. The difference of the power with which the centre of the earth, and the points of it's furface, are attracted toward the fun, is, therefore, very fmall ; and from calculations actually made, it is found to be three times lefs, nearly, than that of the moon upon thefe points. The attractive power of the fun alone, then, would likewife be capable of caufing the flux and reflux of the fea; but it would be about three times lefs than that which is the effect of the combined influence of thefe two luminaries.

It is evident, then, that the flux and reflux of the fea are produced by the power of both the fun and the moon, or that there are really two tides, occa, fioned, the one by the moon, the other by the fun, and called the lunar tide and the folar tide. That of the moon, nearly three times greater, follows it's motion, and from one day to another is retarded three quarters of an hour : that which follows the action of the fun, would conftantly correfpond to the fame hours of the day, if it exifted alone, or if there were no moon. Thefe two tides, the lunar and the folar together, produce the flux and reflux of the fea; but as the one and the other, feparately, make the waters of the fea alternately to rife and fall, when it happens that thefe two caufes, conjointly, make the fea rife and fall, it's flux and reflux become much more confiderable ; but when the one tends to raife Vol. I.
the fea, and the other to lower it, at the fame place, when they act in contrary directions, the one will then be diminifhed by the other, and the lunar tide will be weakened by the folar. According as thefe two tides aflift, or check, each other, the flux and reflux will, then, be more or lefs confiderable.

Now, as at the time of new moon, the fun and moon are in the fame parts of the heavens, their effects being perfectly in unifon, the flux and reflux muft then be greateft, being equal to the fum of the two tides. This will equally take place at the time of full moon, when the moon is oppofite to the fun, as we know that fhe produces the fame effect, though fhe be in a point of the heavens diametrically oppofite to the firft. The flux and reflux muft, therefore, be greater at new and full moon, than at the firft and laft quarters. For then the power of the fun is exerted to lower the waters, and that of the moon to raife them. It is evident, therefore, that, at thefe feafons, the flux and reflux muft be lefs confiderable, and actual obfervation confirms it.

It might be fill farther demonftrated, by calculation, that the effect of the moon, or of the fun, is fomewhat greater, when thefe bodies are at the equator, or equally diftant from the two poles of the globe : which happens at the time of the equinoxes, toward the end of the months of March and September. It is found, too, that then the tides are frongeff. It follows beyond all doubt, then, that the tides, or the flux and reflux of the fea, are caufed by the attractive power of the moon and of the fun,
in as much as thefe powers act unequally on the different parts of the fea. The happy explanation of this phenomenon, which had fo dreadfully perplexed the ancients, is a complete confirmation of the fyftem of attraction, or of univerfal gravitation, on which is founded the motion of all the heavenly bodies.

> 14 th Ocrober, 1760.

LETTER LXVIII.

More particular Account of the Difpute refpecting uni. verfal Gravitation.

HAVING given you a general, but exact, idea of the powers which produce the principal phenomena of the univerfe, and on which are founded the motions of all the heavenly bodies, it is of importance to confider, with more attention, thofe powers which are the principal points of the fyitem of attraction.

It is fuppofed, in this fyftem, that all bodies mutually attract each other, in the ratio of their mafs, and relatively to their diftance, in conformity to a law already explained. The fatisfying manner in which moft of the phenomena in nature are accounted for, proves that this fuppofition is founded in truth; and that the attraction which different bodies exercife upon each other, may be confidered as a moft undoubted fact. It now remains, that we enquire into the caufe of thefe attractive powers; but this S_{2} refearch
refearch belongs rather to the province of metaphyfics than of mathematics. I dare not, therefore, flatter myfelf with the profpect of affured fuccefs in the profecution of it.

It being certain, that any two bodies whatever are attracted to each other, the queftion is, What is the caufe of this attraction? On this point philofophers are divided. The Englifh maintain, that attraction is a property effential to all the bodies in nature, and that thefe bodies, hurried along by an irrefiftible propenfity, tend mutually to approach, as if they were impelled by feeling.

Other philofophers confider this opinion as abfurd, and contrary to the principles of a rational philofophy. They do not deny the fact ; they even admit, that powers exift, which are the caufes of the reciprocal tendency of bodies toward each other; but they maintain, that they are foreign to the bodies; that they belong to the ether, or the fubtile matter which furrounds them, and that bodies may be put in motion by the ether, juft as we fee that a body, plunged into a fluid, receives feveral impreffions from it. Thus, according to the firft, the caufe of the attraction refides in the bodies themfelves, and is effential to their nature ; and, according to the, laft, that it is out of the bodies, and in the fiuid which furrounds them. In this cafe, the term attraction would be improper; and we muft rather fay, that bodies are impelled toward each other. But as the effect is the fame, whether two bodies are reciprocally impelled, or attracted, the word attrac-
tion need not give offence, provided it is not pretended, by that term, to determine the nature itfelf of the caufe.

To avoid all confufion which might refult from this mode of expreffion, it ought rather to be faid, that bodies move, as if they mutually attracted each other. This would not decide, whether the powers which act on bodies refide in the bodies themfelves, or out of them ; and this manner of fpeaking might thus fuit both parties. Let us confine ourfelves to the bodies which we meet with on the furface of the earth.

Every one readily admits, that all thefe would fall downward, unlefs they were fupported. Now, the queftion turns on the real caufe of this fall. Some fay, that it is the earth which attracts thefe bodies, by an inherent power natural to it ; others, that it is the ether, or fome other fubtile or invifible matter, which impels the body downward : fo that the effect is, neverthelefs, the fame in both cafes. This laft opinion is moft fatisfactory to thofe who are fond of clear principles in philofophy, as they do not fee, how two bodies at a diftance can act upon each other, if there be nothing between them. The others have recourfe to the divinc Omnipotence, and maintain, that God has endowed all bodies with a power of mutual attraction.

Though it be dangerous to venture on difputing concerning the limits of divine power, it is, neverthelefs, certain, that if attraction were an immediate work of that power, without being founded in the
nature of bodies, this would be the fame thing as faying, that God immediately impels bodies toward each other, and this would amount to a perpetual miracle.

Let us fuppofe, that before the creation of the world, God had created only two bodies, at a diftance from each other ; that nothing abfolutely exifted out of them, and that they were in a fate of reft ; would it be poffible for the one to approach the other, or that they fhould have a propenfity to approach? How could the one feel the other at a diftance? Whence could arife the defire of approaching? Thefe are perplexing queftions. But if you fuppofe that the intermediate fpace is filled with a fubtile matter, we can comprehend, at once, that this matter may act upon the bodies, by impelling them; the effect would be the fame as if they poffeffed a power of mutual attraction.

Now, as we know, that the whole fpace which feparates the heavenly bodies, is filled with a fubtile matter, called ether, it feems more reafonable to afcribe the mutual attraction of bodies to an action which the ether exercifes upon them, though it's manner of acting may be unknown to us, rather than to have recourfe to an unintelligible property.

Ancient philofophers fatisfied themfelves with explaining the phenomena of nature, from qualities which they called occult, faying, for example, that opium caufes fleep, from an occult quality, which difpofes it to procure fleep. This was faying juft nothing, or rather was an attempt to conceal igno-
rance. We ought, therefore, likewife to confider attraction as an occult quality, in as far as it is given for a property effential to bodies. But, as the idea of all occult qualities is now banifhed from philofophy, attraction ought not to be confidered in this fenfe.

18tb October, 1760.

LETTER LXIX.

> Nature and Efence of Bodics: or Extenfion, Mobility, and Impenctrability of Body.

THE metaphyfical difquifition, Whether bodies may be endowed with an internal power of attracting each other, without being impelled by an external force, cannot be terminated, till we have examined more particularly the nature of body in general. As this fubject is of the laft importance, not only in mathematics and phyfics, but in every branch of philofophy, you muft permit me to go into a more particular detail of it.

Firf, it is alked, What is body? However abfurd this queftion may appear, as no one is ignorant of the difference between what is body and what is not, it is, however, difficult to afcertain the real characters which conftitute the nature of bodies. The Cartefians fay, it confifts in extenfion, and that whatever is extended is a body. They clearly underftand, that extenfion has, in this cafe, three dimen.
fions; and that a fingle dimenfion, or extenfion in lengtho only, gives only a line ; and that two dimenfions, length and breadth, form only a furface, which fill is not a body. To conftitute a body, therefore, we muft have three dimenfions, and every body muft have length, breadth, and depth, or thicknefs; in other words, an extenfion in three dimenfions.

But, it is afked, at the fame time, if every thing which has extenfion is a body? This muft be the
 which the vulgar form of fpectres contains extenfion; it is, however, denied that they are bodies. Though this idea be purely imaginary, it ferves to prove, however, that fomething may have extenfion without being a body. Befides, the idea which we have of fpace, contains, undoubtedly, an extenfion with three dimenfions. It is admitted, neverthelefs, that fpace alone is not a body; it only furnifhes the place which bodies occupy and fill.

Let us fuppoie, that all thofe which are at prefent in my apartment, air and every thing, were annihilated by the divine Omnipotence, there would remain ftill in the apartment the fame length, breadth. and height, but without a body in it. Here, then, is the poffibility of an extenfion that fhall not be a body. Such a face, without body in it, is called a vacuum ; a vacuum then is extenfion without body.

It may likewife be faid, according to the vulgar fuperftition, that a fpectre has extenfion, but that body, or corporality, is wanting to it. It is clear, then, that extenfion is not fufficient to conftitute a. body,
body, that fomething more is neceflary; hence it follows, that the definition of the Cartefians is not exact. But what more is neceflary, befide extenfion, to confitute a body? The anfwer is, mobility, or the poffibility of being put in motion; for, though a body be at reft, whatever may be the caufes which preferve it in that fate, it would, however, be poffible to move it, provided the powers applied to it were fufficient. By this, fpace is excluded from the clafs of bodies, as we fee that fpace, which only ferves to receive bodies, remains immoveable, whatever motion the bodies that it contains may have.

It is likewife faid, that, by the help of motion, bodies are tranfported from one place to another; by which we are given to underftand, that the places and fpace remain unchangeable. My apartment, however, with the vacuum which I have above fuppofed, might undoubtedly be moved, and actually is fo, as it follows the motion which carries round the earth itfelf; here, then, is a vacuum in motion, without being a body. The vulgar fuperfition, too, befows motion on fpectres; and this is fufficient to prove, that the power of being moved, and extenfion, alone, do not conftitute the nature of bodies. Something more is wanting; there muft be matter to conftitute a body, or rather, it is this which diftinguifhes a real body from fimple extenfion, or from a fpectre.

Here, then, we are reduced to explain what is to be underfood by the term matter, without which extenfion cannot be body. Now, the fignification
of thefe two terms is fo much the fame, that all body is matter, and all matter is body; fo that even now we have made no great progrefs. We eafily difcover, however, a general character, infeparable from all matter, and, confequently, pertaining to all bodies; it is impenetrability, the impoffibility of being penetrated by other bodies, or the impoffibility that two bodies fhould occupy the fame place at once. In truth, impenetrability is what a vacuum wants in order to be a body.

It will, perhaps, be objected, that the hand may be eafly moved through air and through water, which are, neverthelefs, acknowledged bodies; thefe, then, muit be penetrable bodies, and, confequently, impenetrability is not an inherent character of all bodies. But it is worthy of remark, that when you plunge your hand into water, the particles of the water make way for your hand, and that there is no water in the fpace which your hand occupies. If the hand could move through the water, while that fluid did not make room for it, but remained in the place which the hand occupied, then it would be penetrable; but it is evident this is not the cafe. Bodies, then, are impenetrable: a body, therefore, always excludes, from the place which it occupies, every other body; and as foon as a body enters into any place, it is abfolutely neceflary that the body which occupied it before fhould leave it. This is the fenfe which we muft affix to the term impenetrability. 21/2 OROEer, I; 60.

LETTER LXX.

Impenetrability of Bodies.

THE inftance of a fpunge will, perhaps, be produced as an objection to the impenetrability of bodies; which, plunged into water, appears completely penetrated by it. But the particles of the fpunge are very far from being fo, in fuch manner as that one particle of the water fhould occupy the fame place with one particle of the fpunge. We know that fpunge is a very porous body; and that before it is put into the water, it's pores are filled with air; as foon as the water enters into the pores of the fpunge, the air is expelled, and difengages itfelf under the form of little bubbles; fo that, in this cafe, no penetration takes place, neither of the air by the water, nor of the water by the air, as this laft always makes it's efcape from the places into which the water enters.

It is, then, a general, and effential property of all bodies, to be impenetrable ; and, confequently, the juftnefs of this definition muft be admitted: that a body is an impenetrable extenfion; as not only all bodies are extended and impenetrable, but likewife, reciprocally, as that which is, at the fame time, extended and impenetrable, is, beyond contradiction, a body. Vacuum is, accordingly, excluded from the clafs of bodies ; for, though it bas extenfion, it wants impenetrability; and wherever we meet with a vacuum,
there bodies may be introduced, without thrufting any thing out of it's place.

We muft attempt to remove another difficulty, raifed againft the impenetrability of bodies. There are, fay the objectors, bodies, which admit of compreffion into a fmaller fpace, as, for example, wool, and eipecially air, which it is polible to reduce into a fpace a thoufand times fmaller than what it occupies. It appears, then, that the different particles of air are reduced in the fame place, and that, confequently, they mutually penetrate.

There is, however, nothing in this; for the air, too, is a body, or a fubftance full of empty pores, or filled with that fluid, incomparably more fubtile, which we call etber. In the firft cafe, no penetration will enfue, as the particles of air only approach nearer to each other, according as the vacuum is diminifhed; and, in the other cafe, the ether finds a fufficiency of fmall paffages by which to efcape, as the particles of the air approach each other, but all the while without any mutual penetration. For this feafon, it is neceffary to employ a greater force, when we want to comprefs the air more: and if the air were compreffed to fuch a degree, that it's minute particles touched each other, we could not carry the compreffion farther, becaufe, were it poffible, the minutc particles of the air muft mutually penetrate.

It is, then, a neceffary and fundamental law in nature, that no two bodies can penetrate each other, or occupy the fame piace at once : and it is in a conformity to this principle, that we muft look for the real
fource of all the motions which we obferve in all bodies, and of the changes which befal them. As two bodies cannot continue their motion without penetrating each other, it is abfolutely neceffary that the one fhould give place to the other. If, then, two bodies are moving in the fame line, the one to the left, the other to the right, as it frequently happens at billiards, if each were to continue it's motion, they muft mutually penetrate, but this being impoffible, as foon as they come to touch, a flook takes place, by which the motion of each body is almoft initantly changed; and this fhock is produced, in nature, only to prevent penetration. The motion of each body is precifely changed no further than is neceffary to prevent all penetration; and in this confirts the real caufe of all the changes which happen in the world.

When all thefe changes are attentively confidered, they are found always to take place, in order to prevent fome penetration, which, without there changes, muft have enfued. At the moment I am writing, I obferve, that if the paper were penetrable, the pen would pafs freely into it, without writing: but as the paper fuftains the preffure of my pen, moiftened with ink, it receives from it fome particles which form thefe letters ; which could not happen if bodies penetrated each other.

This property of all bodies, known by the term impenetrability, is, then, not only of the laft importance, relatively to every branch of human knowledge, but we may confider it as the mafter-fpring
which nature fets a-going, in order to produce all her wonders. It merits, then, an attentive examination, in order that we may be enabled to explain more clearly the nature of bodies, and the principles of every fecies of movement, commonly called laz* of motion.
29th Ociober, 1760 .

LETTER LXXI.

Of the Motion of the Bodies, real and apparent.

ALL bodies are at reft, or in motion. However evident this diffinction may be, it is almoft impoffible to judge whecher a body is in the one ftate, or in the other. The paper which I fee on my table feems to me really at reft; but when I reflect that the whole earth is moving with that aftonifhing velocity which I explained in a former letter,* my houfe, my table, and the paper, muft abfolutely be carried along with the fame rapidity. Thus every thing that feems to be at reft, has, in reality, the fame motion as the earth.

We muft therefore difinguifh between two kinds of reft, the one abfolute, the other apparent. Abfolute reft takes place when a body remains conftantly in the fame place, not with relation to the earth, but with relation to the univerfe. If the fixed fars remained always in the fame place of the univerfe,

[^30]they would be at reft, though they feem to move very rapiclly; but as we are not certain of it, we muft not pretend to afirm, that the fixed ftars are in a ftate of abfolute reft.

A body is faid to be in a ftate of apparent ref, when it preferves the fame fituation on the earth. It is likewife to be prefumed, that thefe terms, reft and motion, have been introduced into language to mark rather appearances than truth; and in this fenfe, I affirm, without hefitation, that my table is at ref, as well as the whole earth; and that the fun and the fixed fars are in motion, and that a very rapid motion, although they are really at reft. We fhould, therefore, be afcribing ftrange and purely metaphyfical ideas to thefe expreflions,-if we underftood by them abjolute ref, or motion; and it is abfurd to employ, as fome perions do, paffages of the Holy Scripfures to prove that the earth is at reft, and the fun in motion.

Language is formed for general ufe; and philofophers are under the neceflity of forming a particular language for themfelves. As we are incapable to judge of abfolute reft, it is very natural for us to confider thofe bodies as at reft which preferve the fame fituation relatively to the earth; as it is very probable the inhabitants of other planets, likewife, form their judgment of reft from the fame fituation relatively to their refpective planet.

We obferve, that navigators confider as at reft the objects which preferve the fame fituation relatively to their veffel, and that the coafts which they din-
cover appear to them to be in motion ; and no one thinks of finding fault with their ufing the common modes of expreffion. There is, therefore, a great difference between reft and motion, real or abfolute, and between reft and motion apparent, or relative to a body, confidered at the time as in a fate of reft; though perhaps it may be in motion. The principles or laws of motion refer chiefly to the abfolute fate of bodies, that is, to their reft or motion, real or abfolute. In order to difcover thefe laws, we begin with confidering a body fingly and abftractedly from all others.

This hypothefis, though it never can take place, is, in reality, very proper to affift us in diftinguifhing what is operated by the nature of body itfelf, from that which other bodies are capable of operating upon it.

Let a body, then, be alone, and at reff ; it may be alked, Will it continue at reft, or will it begin to move? As there is no reafon which fhould incline it to move to one fide rather than to another, it is concluded that it would remain always at reft. The fame thing mult happen, on the fuppofition of the exiftence of other bodies, provided they do not act on the body in queftion; hence refults this fundamental law: When a body is once in a fate of reft, and nothing external acts upon it, it will remain always in that Jlate: and if it begin to move, the caufe of motion zould be out of it, So that there is nothing in the body itfelf qubich is capable of putting it in motion. When, therefore, we fee a body which has been at reft begin to
move, we may reft affured that this motion has been occafioned by an exterior power, as there is nothing in the body itfelf capable of putting it in motion; and if it were alone, and cut off from all communication with other bodies, it would remain always at reft.

However well founded this law may be, and however entitled to rank with geometrical truths, there are perfons little accuftomed to profound inveftigation, who pretend that it is contradicted by experience. They allege the example of a thread, to which a ftone is appended ; the ftone is at reft, but falls the moment that the thread is cut. It is certain, fay they, that the action by which the thread is cut is not capable of making the ftone move; the ftone, therefore, muft fall by a power which is proper to itfelf, and internal.

The fact is certain ; but it is evident, at the fame time, that gravity is the caufe of the defcent, and not an internal power in the fone.

They fay farther, that gravity may be an intrinfic power, attached to the nature of the fone; on which it muft be remarked, that gravity is produced either by a fubtile matter, or by the attraction of the earth. In the firft cafe it certainly is that fubtile matter which caufes the defcent of the ftone; in the fecond, which appears favourable to our opponents, it can with no propriety be affirmed, that the fone defcends by an intrinfic power; it is rather the earth which contains the caufe of it, and which produces the defcent of the ftone, by it's attractive power :

Vol. I. T
for
for if the earth did not exift, or were deprived of it's attractive power, they admit that the ftone would not defcend.

It is certain, therefore, that the caufe of the de fcent does not refide in the ftone itfelf: the caufe, then, is always extrinfic, whether it be in the fubtile matter or in the earth, fuppofing it to be endowed with an attractive power, as the partifans of attraction pretend. This difficulty being removed, the law, which I have laid down, fubfifts in full force; namely, That a body, once at reft, will always remain fo, unlefs it be put in motion by fome foreign caufe. This law muft take place, provided the body has been at reft but a fingle inftant, though it was in motion. immediately before; and, when once reduced to a fate of reft, it will always preferve that ftate, unlefs fome foreign caufe intervene to put it again in motion. This principle being the foundation of all mechanics, it was neceffary for me to eftablifh it with all poffible precifion.

28tb OcFober, 1760.

LETTER LXXII.

Of uniform, accelerated, and retarded Motion.

IRETURN to the cafe of a body. placed in fuch a manner as to have no connection with any other. Let us fuppofe it to have received fome motion from whatever caufe; it remains that we enquire, What
will afterwards happen to it? Will it continue to move? Or will it fuddenly return to a fate of reft ; or after fome time? You muft be fenfible, that this is an enquiry of fome importance, and that all our refcarches refpecting the motion of bodies depend upon it. Let us examine if, by means of reafoning, we are able to refolve it.

A body is at reft, as long as it, and all it's parts, remain in the fame place; and it is in motion when that body, or fome of it's parts only, pafs from one place to another. Now, there are two things to be confidered in motion, the direction and the velocity. The direction is the place toward which the body is carried, and the velocity is the fpace, greater or lefs, through which it moves in a certain time. I am perfuaded you have already jufter ideas of this than I could communicate by the mof ample explanation. I remark only, that as long as a body preferves the fame direction, it moves in a ftraight line; and reciprocally, as long as a body moves in a ftraight line, it preferves the fame direction; but when it moves in a curve, it is continually changing it's pofition.

If a body, then, (plate III. fig. 7.) moves in the curve A B C ; when it is at A, $i t$'s direction is the fmall line $A a$; when it is at B, it's direction is the frall line $\mathrm{B} b$; and at C , the fmall line $\mathrm{C} c$. Let thefe fimall lines be produced; the continuations of which are marked by the fraight dotted lines A L, BM, CN; and it will be affirmed, that when the body paffes through A, it's direction is the ftraight line $A L$, becaufe, if the body preferved the fame di-
rection which it had at A, it would move in the ftraight line A L. It is evident, then, that it moves in the curve only in fo far as it is continually changing it's direction. And when it arrives at B and at C, the direction from which it deviates is expreffed by the furaight lines B M and C N.*

A body preferves the fame velocity in it's motion as long at it moves through equal faces in equal times. This motion is called uniform. Thus, for example, if a body moves in fuch a manner as always to proceed ten feet during every fecond, we call this motion uniform. If another body proceeds twenty feet in a fecond, it's motion too would be uniform, but it's velocity would be twice as great as that of the preceding.

* The argument, caufa fufficiens, or fupficient reafon, is a fort of jargon introduced by fome metaphyficians in the beginning of the prefent century, which has ftill it's advocates on the continent. To conclude that a thing is fuch becaufe we fee no fufficient reafon to the contrary, is, indeed, a ftrange method of reafoning. What can be more prepofterous than to employ our ignorance as the inftrument of difcovering truth? And yet this is the plain fatement of the argument. The inftance mentioned in the text, is a noted one, though the ingenious Father Bofoovich remarks, that any inference whatever may with equal juftice be drawn from the fame premifes. Thus, we may fay, that no fufficient reafon can be given that a moving body A fhould approach a point B, rather than recede from it; it will, therefore, keep conftantly at the fame diftance, and, confequently, defcribe a circle about that point. Hence bodies move not in ftraight lines, but in circles. In the fame manner we might fay that motion is not uniform, and indeed prove any thing we pleafe. The fact is, that we derive no part of our knowledge from any abfract reafoning on the nature of things.

From what I have juft faid of the uniformity of motion, it is eafy to comprehend what is not uniform motion; for when the velocity of a body is not equal, it's motion is not uniform. When the velocity of a body goes on increafing, it's motion is faid to be accelerated, and when it is continually diminifhing, we fay it is retarded. In this laft cafe, the velocity may come to be retarded to fuch a degree, that the body fhall at length come to a ftate of reft.

Having made thefe remarks on the velocity and direction of moving bodies, I return to the cafe of a folitary body, which I fuppofe to be put in motion by any caufe whatever. As foon as it has begun to move, it muft have acquired a certain direction, and a certain velocity : and the queftion is, Will it afterwards preferve the fame direction and the fame velocity; or, Will it undergo fome alteration? We cannot affirm that it will be reduced to a fate of reft in an inftant, for, in this cafe, it could not have had any motion, all motion fuppofing duration, however fhort. Now, as long as the motion lafts, it is certain that the direction will remain the fame.

In truth, it is impoffible to conceive why the body fhould go out of it's road, to one fide rather than to another ; and, as nothing comes to pafs without rea.fon, it follows, that the body in queftion will always perfevere in the fame direction, or, that it's motion will proceed in a ftraight line, which is a great ftep made toward the decifion of the queftion.

It is likewife maintained, that the velocity of the
body, of which I fpeak, cannot change : for in that cafe it muft either increafe or diminifh, and no reafon can be afligned capable of producing this change. Hence it is concluded, that this body will always continue to move with the fame velocity, and in the fame direction, or that it will proceed continually in the direction of a ftraight line, without ever deviating from it, and always with equal fpeed. This motion will be performed, then, always in a ftraight line, and with an equal velocity, without ever being flackened or retarded; the body, therefore, will never be reduced to a fate of reft.

What has been faid of a body, which I have fuppofed folitary, would happen in like manner to our globe, if no other bodies had any influence upon it, for then it would be the fame thing as if they did not exif. The queftion, then, is refolved. A body in motion will always preferve it in the fame direction, and with the fame velocity, unlefs fome external caufe interpofe, capable of altering it's motion. So long, therefore, as a body is not fubject to the action of fome external caufe, it will remain at reft, if it has once been in a ftate of reft; or will be moved in the direction of a fraight line, and always with the fame velocity, if it has once been put in motion; and this is the firft and principal law of nature on which the whole fcience of motion muft be founded.

From it we deduce at once this conclufion, that as often as we fee a body which was at reft put in motion, or a body moving in a curve line, or whofe ve-
locity changes, it is certain, that an external caufe acts upon it. No change can poffibly take place either as to direction or velocity, but what is the operation of a foreign caufe.
if Novenber, 1 ; 60.

LETTER LXXIII.

Principal Law of Motion and Reft. Dijputcs of Pbilofophers on the Subject.

WITH whatever folidity this principle is eftablifhed, that every body put in motion continues to move in the fame direction, and with the fame velocity, unlefs fome exterior caufe interpofe to derange this motion; it has, neverthelefs, been combated by certain philofophers, who have never made any great progrefs in the fcience of motion ; while thofe to whom we are indebted for all the great difcoveries which have been made in this fcience, unanimoufly agree, that all their refearches have proceeded entirely on this principle. It is attacked by two fects of philofophers, whofe objections I proceed to propofe, and fhall endearour to refute.

It is alleged by the one, That all bodies have a propenfity to reft, which is their natural fate, and that motion is to them a fate of violence; fo that when a body is put in metion, it has a tendency, from it's very nature, to return to the fate of reft; and that it makes every efiort to deffroy it's motion,

$$
\mathrm{T}_{4}
$$

indepen-
independently of every external or foreign caufe. They allege, in proof, experience, fo convincing, according to them, that we know of no motion in nature that docs not very fenfibly betray this reluc. tance. Do we not fee, fay they, on the billiard table, that with whatever force we ftrike a ball, it's motion is quickly flackened, and it foon returns to a fate of reft. As foon as the motion of a clock ceafes to be kept up by the external force which fet it a going, it ftops. It is remarked of all machines in general, that their motion lafts no longer than the external powers by which they are agitated. Hence they conclude, that a body put in motion is fo far from preferving it from any thing in it's own nature, that, on the contrary, an external force muft be employed to keep it up.

You muft be fenfible that, if this conclufion is juft, our principle is completely fubverted; as, in virtue of this principle, the ball and the machines in queftion, once put in motion, muft always preferve the fame, unlefs external caufes have occafioned fome change in it. Thus, in the experiments referred to, had there been no external caufe which tended to deftroy the motion, we fhould have been under the neceflity of abandoning our principle.

But, if we attend to every thing, we fhall find fo many obftacles oppofed to the motion, that we need no longer wonder it fhould be fo fpeedily extinguifhed. In fact, it is firft the friction on the billiard table which diminifhes the motion of the ball, for it cannot advance without rubbing againft the cloth.

Again, the air being a fubftance, caufes likewife a refiftance capable of diminifhing the motion of bodies. To be convinced of this, you have only to move your hand rapidly through the air. It is evident, then, that in the cafe of the billiard table, it is the friction and the refiftance of the air which counteract the motion of the ball, and foon reduce it to a fate of reft.

Now, thefe caufes are external, and it is eafily comprehenfible that, but for thefe obftacles, the motion of the ball muft have always continued. The fame reafoning is applicable to machines of all kinds, in which the friction which acts on the different parts is fo confiderable, that it is vifibly a very fufficient caufe of foon reducing the machine to reft.

Having, then, difcovered the real caufes which produce, in the cafes alleged, the extinction of motion, and that thefe caufes are external, and not refident in the moving body, it is evidently falfe, that bodies have in their nature a propenfity to reft. Our principle, therefore, fubfifts in full force, and even acquires additional ftrength from the preceding objections. Every body, then, always preferves the motion which it has once received, unlefs foreign caufes interpofe to change the direction or the velocity, or both at once. And thus we have got rid of one phalanx of the adverfaries who combat our principle.

The other is more formidable, for they are no lefs than the celebrated Wolifan philofophers. They do not, indeed, openly declare againft our principle, nay
they
they even exprefs much refpect for it ; but they advance others which directly oppofe it.

They maintain, That all bodies, in virtue of their nature, are making continual efforts to change their ftate; that is, when they are at reft, they make an effort to move; and, if they are in motion, make continual efforts to change their velocity and direction. They allege nothing in proof of this affertion, except certain crude reafonings, drawn from their fyftem of metaphyfics, which I fhall hereafter taize occafion to lay before you. I only remark, at prefent, that, this opinion is contradicted by the principle which we have fo firmly eftablifhed; and by experience, which is in perfect conformity with it.

In fact, if it be true that a body at reft remains, in virtue of it's nature, in that fate, it muft be undoubtedly falfe that it fhould make, in virtue of it's nature, continual efforts to change it's fate. And if it be true that a body in motion preferves, in virtue of it's nature, this motion, in the fame direction, and with the fame velocity, it is impofible that the fame body fhould, in virtue of it's nature, be making continual efforts to change it's motion.

Thefe philofophers, in attempting to maintain, at the fame time, the true principle of motion, and their own abfurd opinion, have fallen into felf-contradiction, and thereby fubverted their own fyitem. It is, therefore, placed beyond the reach of difpute, that our principle is founded in the very nature of body, and that whatever is contrary to it ought to be banifhed from found philofophy: and this fame prin-
ciple enables us to clear it of certain fubtilties in which it has been involved.

This principle is commonly expreffed in the two following propofitions: Firft; A body once at reft will remain eternally at reft, unlefs. it be put in motion by fome external or foreign caufe: Secondly; A body once in motion will preferve it eternally, in the fame direction, and with the fame velocity; or will proceed with an uniform motion, in a ftraight line, unlefs it is difturbed by fome external, or foreign caufe. In thefe two propofitions confifts the foundation of the whole fcience of motion, called mectuanics.
$4^{\text {th }}$ Novernber, 1760 .

LETTER LXXIV.

Of the Inertia of Bodies: Of Powers.

AS we fay, that a body, fo long as it is at reft, remains in the fame ftate, fo we likewife fay of a body in motion, that as long as it moves in the fame direction, and with the fame velocity, it remains in the fame ftate. To continue in the fame ftate, then, fignifies nothing more than to remain at reft, or to preferve the fame motion.

This manner of fpeaking has been introduced for the purpofe of expreffing more fuccinctly our grand principle, that every body, in virtue of it's nature, preferves itfelf in the fame ftate, till an extraneous caufe come to difturb it, that is, to put the body in motion when at reft, or to derange it's motion.

It muft not be imagined that a body, in order to preferve the fame fate, muft remain in the fame place; this, indeed, is the cafe when the body is at reff; but when it moves with the fame velocity, and in the fame direction, we fay, equally, that it continues in the fame ftate, though it is every inftant changing it's place. It was neceffary to make this remark, to prevent the poffibility of confounding change of place with that of ftate. If it be now aiked, Why bodies continue in the fame ftate? The anfwer muft be, that this is in virtue of their peculiar nature.

All bodies, in as far as they are compofed of matter, have the property of remaining in the fame fate, if they are not drawn out of it by fome external caufe. This, then, is a property founded on the nature of bodies, by which they endeavour to preferve themfelves in the fame fate, whether of reft or motion. This quality with which all bodies are endowed, and which is effential to them, is called inertia,* and it enters as neceffarily into their conftitution as extenfion and impenetrability; to fuch a de-

[^31]gree, that it would be impoffible for a body to exift, divefted of this inertia.

This term was firft introduced into philofophy by thofe who maintained that all bodies have a propenfity to reft. They confidered bodies as fomewhat refembling indolent perfons, who prefer reft to exertion, and afcribed to bodies an averfion to motion, fimilar to that which fluggards have for labour ; the term inertia fignifying nearly the fame thing as fluggifhnefs. But though the falfenefs of this opinion has been fince detected, and though it is certain that bodies remain equally in their ftate of motion, as in that of reft, yet the term inertia has been fill retained to denote in general the property of all bodies to continue in the fame fate, whether of reft or of motion.*

The exact idea of inertia, therefore, is a repugnance to every thing that has a tendency to change the frate of bodies; for as a body, in virtue of it's nature, preferves the fame fate of motion, or of reft, and cannot be drawn out of it but by external caufes, it follows that, in order to a body's changing it's

* The diffinguifhing property of inanimate matter is it's abfolute paffivenefs or want of difpofition to change it's ftate, whether that of reft, or of motion. The term inertia is improper, fince it conveys an idea of fluggifhnefs, or a reluctance to be put in motion; whereas bodies are obedient to the fmalleft impulfe, and the action generated is ever proportioned to the force. The expreffion vis inertic, commonly ufed, is really a contradiction of terms. Indeed, it would be no differvice to natural philofophy, if the law that "action and re-action are equal and oppofite," were entirely omitted. $-E$. E.
ftate, it muft be forced out of it by fome external caufe: without which it would always continue in the fame frate. Hence it is, that we give to this external caufe the name of pozver or force. It is a term in common ufe, though many by whom it is employed have but a very imperfect idea of it.

From what I have juft faid you will fee that the word force fignifies every thing that is capable of changing the fate of bodies. Thus, when a body which has been at reft is put in motion, it is a force which produces this effect; and when a body in motion changes it's direction, or velocity, it is likewife a force which produces this change. Every change of direction, or of velocity, in the motion of a body, requires either an increafe or a diminution of force. Such force, therefore, is always out of the body whofe ftate is changed; for we have feen that a body left to itfelf, preferves always the fame ftate, unlefs a force from without acts upon it.

Now, the inertia by which a body tends to preferve itfelf in the fame ftate, exifts in the body itfelf, and is an effential property of it: when, therefore, an external force changes the fate of any body, the inertia which would maintain it in the fame fate, oppofes itfelf to the action of that force; and hence we comprehend, that the inertia is a quality fufcep. tible of meafurement, or that the inertia of one body may be greater or lefs than that of another body.

But bodies are endowed with this inertia in as far as they contain matter. It is even by the inertia, or the refiftance which they oppofe to every change of
fate, that we judge of the quantity of a body; the inertia of a body, accordingly, is greater in proportion to the quantity of matter which it contains. Hence we conclude, that it requires a greater force to change the fate of a great body, than that of a fmall one; and we go on to conclude, that the great body contains more matter than the fmall one. It may even be afirmed that this fingle circumftance, the inertia, renders matter fenfible to us.

It is evident, then, that the inertia is fufceptible of meafurement, and that it is the fame with the quantity of matter which a body contains: as we denominate, likewife, the quantity of matter in a body, it's mafs, the meafure of the inertia is the fame as that of the mais.

To this, then, is reduccd our knowledge of bodies in general. Firft, we know, that all bodies have an extenfion of three dimenfions; fecondiy, that they are impenetrable; and hence refults their general property, known by the name of ineria, by whichs they preferve themfelves in their ftate; that is, when a body is at reft, by it's inertia it remains fo; and when it is in motion, it is likewife by it's inertia that it continues to move with the fame velocity, and in the fame direction; and this prefervation of the fame ftate lafts till fome external caufe interpofe to produce a change in it. As often as the ftate of a body changes, we muft never look for the caufe of fuch change in the body itfelf; it exifts always out of the body, and this is the juft idea which we muft form of a power or force.

Sib Nowember, 1760.

L E T T ER LXXV.

Cbanges which may take place in the State of Bodies.

THE fundamental principle of mechanics, with the idea of inertia, which I have endeavoured to explain, enables us to reafon on folid ground refpecting various phenomena prefented to us in nature. On feeing a body in motion, which fhould proceed uniformly in a ftraight line, that is, which fhould preferve the fame direction, and the fame velocity, we would fay, that the caufe of this continuation of motion is not to be found out of the body; but that it is founded in it's very nature, and that, in virtue of it's inertia, it remains always in the fame ftate; as we would fay, were the body at reft, that this took place in virtue of it's inertia.

We would likewife be right in faying that this body undergoes no action from any external caufe; or, if any fuch exifted, that thefe powers reciprocally deftroyed each other in fuch a manner that the body is in the ftate in which it would be if no force acted upon it.

If it is anked, then, Why the body continues to move in this manner? The anfwer is obvious. But if it is afked, Why this body has begun thus to move? The queftion is totally different. It muft be faid, that this motion has been impreffed upon it by fome external force, if it was before at reft; but it would be impoffible to affirm any thing with certainty
tainty refpecting the quantity of that force, becaufe, perhaps, no traces of it remain. It is, therefore, abundantly ridiculous to afk, Who impreffed motion on every body at the beginning of the world? Or, Who was the prime mover? Thofe who put the queftion admit, then, a beginning, and, confequently, a creation; but they imagine that God created all bodies at reft. Now, it may be anfwered, That he who could create bodies could imprefs motion upon them. I afk them, in my turn, If they believe it to be more eafy to create a body at reft than in motion? They both equally require the omnipotence of God, and this queftion belongs not to the province of philofophy.

But when a body has once received motion, it preferves that motion by it's own nature, or by it's inertia, in the fame fate in which it muft conftantly remain, until a force, or fome foreign caufe, oppofe an obifacle to it. As often, then, as we obferve that a body does not remain in the fame fate, that a body at reft begins to move, or that a body in mo. tion changes it's direction, or velocity, we muft admit that this change has it's caufe out of the body, and that it is occafioned by a foreign force. Thus, as a ftone, left to itfelf, defcends, the caufe of that defcent is foreign to the body, and it is not from it's own nature that the body defcends, but from the effect of a foreign caufe, to which we give the name of gravity.

Gravity, then, is not an intrinfic property of body; Voz. I.
it is rather the effect of a foreign force, the fource of which muft be fought for out of the body. This is geometrically true, thougli we know not the foreign forces which occafion gravity. It is the fame when we throw a ftone. We fee clearly, that it does not follow, in it's motion, the direction of a ftraight line, and that it's velocity does not always continue the fame. It is gravity, likewife, which changes the direction or the velocity of the body ; but for it, the ftone would defcribe a fraight line in the air, and proceed forward with the fame velocity; and were gravity to be fuddenly annihilated, during the motion of the ftone, it would continue to move in a ftraight line, and would preferve the fame direction, and the fame velocity, which it had at the intant when gravity ceafed to act upon it.

But as gravity acts continually, and upon all bodies, we need not be furprized, that we meet with no motion in which the direction and the velocity continue the fame. The cafe of reft may very well take place; it is when fomething invincibly oppofes the fall of a body; thus the floor of my apartment prevents my falling into that below it. But the bodies which appear to us at reft, are carried along by the motion of the earth, which is neither rectilinear nor uniform: it cannot be affirmed, therefore, that thefe bodies remain in the fame fate. Neither is there one of the heavenly bodies which moves in a ftraight line, and always with the fame velocity: they are continually changing their ftate; and even the forces which pro-
duce this continual change are not unknown to us; they are the attractive powers which the heavenly bodies exercife over one another.

I have already remarked, that thefe forces may, very probably, be caufed by the fubtile matter which furrounds all the heavenly bodies, and fills the whole fpace of the heavens; but, according to the opinion of thofe who confider attraction as a power inherent in matter, this force is always foreign to the body on which it acts. Thus, when we fay the earth is attracted toward the fun, it is acknowledged, that the force which acts upon the earth is not refident in the earth itfelf, but in the fun; as in fact, if the fun did not exift, there would be no fuch force.

This opinion, however, that attraction is effential to all matter, is fubject to fo many other inconveniences, that it is hardly poffible to allow it a place in a rational philofophy. It is certainly much fafer to proceed on the idea, that what is called attraction, is a power contained in the fubtile matter which fills the whole fpace of the heavens; though we cannot tell how. We muft accuftom ourfelves to acknowledge our ignorance on a variety of other important fubjects.

[^32]
LETTER LXXVI.

Syfem of the Monads of Wolff.

BEFORE I attempt to make you fenfible of the truth of the principle, that all bodies, of themfelves, always preferve the fame ftate of reft, or motion, I muft remark, that if we confult experience only on the fubject, without thoroughly inveftigating it by the powers of reafoning, we would be difpofed to draw the directly oppofite conclufion, and to maintain, That bodies always have a propenfity to be continually changing their fate; as we fee nothing in the whole univerfe, but a perpetual change in the ftate of bodies. But we have juft fhewn what are the caufes which produce thefe changes, and we are affured, that they are not to be found in the bocies whofe fate is changed, but out of them.

The principle, then, which we have eftablifhed, is fo far from being contradicted by experience, that it is, on the contrary, confirmed by it. You will eafily judge from this, how feveral great philofophers, mifled by an experience not accurately underfood, have fallen into the error of maintaining, That all bodies are endowed with powers, difpofing them continually to change their fate.

It is thus that Wolf has reafoned. He fays: i. Experience fhews us all bodies perpetually changing their fate; 2. Whatever is capable of changing the ftate of bodies, is called force; 3. All bodies, there-
fore, are endowed with a force capable of changing their ftate; 4. Every body, therefore, is making a continual effort to change ; 5 . Now, this force belongs to body, only fo far as it contains matter ; 6. It is, therefore, a property of matter to be continually changing it's own ftate; 7. Matter is a compound of a multitude of parts, denominated the elements of matter ; therefore, 8 . As the compound can have nothing but what is founded in the nature of it's elements, every elementary part muft be endowed with the power of changing it's own ftate.

Thefe elements are fimple beings; for if they were compofed of parts, they would be no longer elements, but their parts would be fo. Now, a fimple being is likewife denominated monad; every monad, therefore, has the power of continually changing it's ftate. Such is the foundation of the fyitem of monads, which you may have heard mentioned, though it does not now make fuch a noife as it formerly did. I have marked by figures the feveral propofitions on which it is eftablifhed, for the purpofe of making a more diftinct reference, in the reflections I mean to make upon them.

I have nothing to fay refpecting the firft and fecond; but the third is very equivocal, and altogether falfe, in the fenfe in which it is taken. Without meaning to fay, that the forces which change the ftate of bodies, proceed from fome fpirit, I readily agree, that the force, by which the ftate of every body is changed, fubfits in body, but, it being always underfood, that it fubfifts in another body, and never
in that which undergoes the change of fate; which has rather the contrary quality, that of perfevering in the fame frate. In fo far, then, as thefe forces fubfirt in bodies, it ought to be faid, that thefe bodies, as long as they have certain connections with each other, may be capable of fupplying forces by which the ftate of another body is changed. . It follows, that the fourth propofition muft be abfolutely falfe; and the refult, from all that went before, rather is, that every body is endowed with the power of remaining in the fame ftate, which is directly the oppofite of the conclufion which thefe philofophers have drawn. .

And I muft here remark, that it is rather abfurd to give the name of force to that quality of bodies by which they remain in their fate; for if we are to underftand by the term force every thing that is capable of changing the ftate of bodies, the quality by which they perfevere in their fate, is rather the oppofite of a force. It is, therefore, by an abufe of language, that certain authors give the name of force to the inertia, which is that quality, and which they denominate the inert force.

But, not to wrangle about terms, though this abufe may lead to very grofs errors, I return to the fyftem of monads : and as propofition 4, is falfe, thofe that follow, which are fucceflively founded upon it, muf, of neceffity, be fo too. It is falfe, then, likewife, that the elements of matter, or monads, if fuch there be, are poffefled of the power of changing their frate. The truth is rather to be founded in the oppofite quality,
quality, that of perfevering in the fame fate; and thereby the whole fyftem of monads is completely fubverted.

Thefe ' philofophers attempted to reduce the elements of matter to the clafs of beings, which comprehends fpirits and fouls, endowed, beyond the power of contradiction, with the faculty of changing: their fate ; for, while I am writing, my foui continually reprefents other objects to itfelf, and thefe changes depend entirely on my will: I am thoroughly convinced of it, and not the lefs fo, that I am mafter of my own thoughts; whereas the charges which take place in bodies, are the effect of an extraneous force.

Add to this, the infinite difference between the fate of body, capable only of one velocity and of one direction, and the thoughts of fpirit, and you will be entirely convinced of the falfehood of the fentiments of the materialifts, who pretend that fpirit is only a modification of matter. Thefe gentlemen have no knowledge of the real nature of bodies.

> 15 th Noveinber, 1760.

'LETTER LXXVII.

Origin and Nature of Powers.

T T is, undoubtedly, very furprizing, that, if every body has a natural difpofition to preferve itfelf in the fame fate, and even to oppofe all change, all the bodies in the univerfe fhould, neverthelefs, be
continually changing their fate. We are well affured, that this change can be produced only by a force not refident in the body whofe ftate is changed. Where, then, muft we look for thofe powers, which produce the inceffant clianges that take place in all the bodies of the univerfe ; and which are, neverthelefs, foreign to body?

Muft we then fuppofe, befides thefe exifting bodies, particular beings which contain thofe powers? Or, are the powers themfelves particular fubftances exifting in the world? We know but of two kinds of beings in it, the one which comprehends all bodies, and the other all intellectual beings, namely, the fpirits and fouls of men, and thofe of animals. Muft we eftablifh, then, in the world, befides body and fpirits, a third fpecies of beings, under the name of power, or force? Or, are they fpirits which inceffantly change the ftate of bodies?

Both of thefe labour under too many difficulties to be haftily adopted. Though it cannot be denied, that the fouls of men, and of beafts, have the power of producing changes in their bodies, it were, however, abfurd to maintain, that the motion of a ball, on the billiard table, was retarded and deftroyed by fome fpirit ; or that gravity was produced by a fpirit continually preffing bodies downward; and that the heavenly bodies, which, in their motion, change both direction and velocity, were fubjected to the action of firits, according to the fyitem of certain ancient philofophers, who afigned to each of the heavenly bodies, a fpirit, or angel, who directed iț's courfe.

Now, on reafoning with folidity, refpecting the phenomena of the univerfe, it muft be admitted, that, if we except animated bodies, that is, thofe of men and beaits, every change of ftate which befalls other bodies, is produced by merely corporeal caufes, in which fpirits have no thare. The whole queftion, then, is reduced to this, Whether the forces which change the fate of bodies, exift feparately, and conftitute a particular fpecies of beings, or whether they exift in the bodies?

This laft opinion appears, at firft fight, very unaccountable; for if all bodies have the power of preferving themfelves in the fame fate, how can it be poffible they fhould contain powers that have a tendency to change it? You will not be furprized to hear, that the origin of force has, in all ages, been a ftumbling-block to philofophers. They have all confidered it as the greateft myftery in nature, and as likely to remain for ever impenetrable. I hope, however, I fhall be able to prefent you with a folution, fo clear of this pretended myftery, that all the difficulties which have hitherto appeared infurmountable, thall wholly vanifh.

I fay, then, that however ftrange it may appear, this faculty of bodies, by which they are difpofed to preferve themfelves in the fame fate, is capable of fupplying powers which may change that of others. I do not fay, that a body ever changes it's own fate, but that it may become capable of changing that of another. In order to enable you to get to the bottom of this myftery, refpecting the origin of force,
it will be fufficient to confider two bodies, as if no others exifted.

Let the body A (plate III. fig. 4.) be at reft, and let the body B have received a motion in the direction B A, with a certain velocity. This being laid down, the body A is difpofed to continue always at reft; and the body B to continue it's motion along the ftraight line $\mathrm{B} A$, always with the fame velocity, and both the one and the other in virtue of it's inertia. The body B will, at length, then come to touch the body A. What will be the confequence? As long as the body A remains at reft, the body B could not continue it's motion, without palling through the body A, that is, without penetrating it ; it is impoffible, then, that each body fhould preferve itfelf in it's frate, without the one's penetrating the other. But this penetration is impoffible; impenetrability being a property common to all bodies.

It being impoffible, then, that both the one and the other fhould preferve it's ftate, the body A muft abfolutely begin to move, to make way for the body B , that it may continue it's motion; or, that the body B , having come clofe to the body A , muft have it's motion deftroyed; or, the ftate of both muft be changed, as much as is neceffary, to put them in a condition to continue, afterward, each in his proper ftate, without mutual penetration.

Either the one body, therefore, or the other, or both, muft abfolutely undergo a change of their fate, and the caufe of this change, infallibly exifts in the impenetrability of the bodies themfelves; fince
every caufe, capable of changing the ftate of bodics, is demonftrated force, it is then, of neceffity, the impenetrability of the bodies themfelves, which produces the force, by which this change is effected.

In fact, as impenetrability implies the impoffibility, that bodies fhould mutually penetrate, each of them oppofes itfelf to all penetration, even in the minuteft parts ; and to oppofe itfelf to penetration, is nothing elfe, but to exert the force neceffary to prevent it. As often, then, as two or more bodies cannot preferve themfelves in their ftate, without mutual penetration, their impenetrability always exerts the force neceflary to change it, as far as is requifite, to prevent the flighteft degree of penctration.

The impenetrability of bodies, therefore, contains the real origin of the forces, which are continually changing their ftate in this world: and this is the true folution of the great myftery, which has perplexed philofophers fo grievouily.
18th November, 1760.

LETTER LXXVIII.

The fame Subject. Principle of the leaft pofible Action.

YOU have now made very confiderable progrefs in the lenowledge of nature, from the explanation of the real origin of the powers capable of changing the ftate of bodies; and you are, at prefent, in a condition eafily to comprehend, why all
thofe of this world are fubject to an inceffant change of fate, from reft to motion, or from motion to reft.

Firft, we are certain, that the world is filled with matter. Here below, it is evident, that the face which feparates the grofs bodies fenfible to feeling, is occupied by the air, and that, when we make a vacuum in any fpace, the ether inftantly fucceeds, and it, likewife, fills the fpace in which the heavenly bodies move. All face being thus full, it is impoffible that a body in motion fhould continue it a fingle inftant, without meeting others, through which it muit pafs, if they were not impenetrable. And, as this impenetrability of bodies exerts always, and univerfally, a force which prevents all penetration, it muft be continually changing the fate of bodies; it is not at all furprizing, then, that we fhould obferve perpetual changes in the fate of bodies, though every one has a tendency to preferve itfelf in the fame ftate.

If they could penetrate each other freely, nothing would prevent any one from remaining perfeveringly in it's ftate; but being impenetrable, there muft thence, neceffarily, refult force fufficient to prevent all penetration ; and no more refults than what is precifely needful.

While they can continue in the fame fate, without any injury to impenetrability, they then exert no force, and bodies remain in their ftate; it is only to prevent penetration, that impenetrability becomes active, and fupplies a force fufficient to oppofe it.

When, therefore, a fmall force fuffices to prevent penetration, impenetrability exerts that, and no more; but when a great force is neceffary for this purpofe, impenetrability is ever in a condition to fupply it.

Thus, though impenetrability fupplies thefe powers, it is impofible to fay, that it is endowed with a determinate force; it is rather in a condition to fupply all kinds of force, great or fmall, according to circumftances; it is even an inexhauftible fource of them. As long as bodies are endowed with impenetrability, this is a fource which cannot be dried up; this force abfolutely muft be exerted, or bodies muft mutually penetrate, which is contrary to nature.

It ought, likewife, to be remarked, that this force is never the effect of the impenetrability of a fingle body; it refults always from that of all bodies at once, for if one of the bodies was penetrable, the penetration would take place, without any need of a power to effect a change in their ftate. When, therefore, two bodies come into contact, and when they cannot continue in their fate without penetrating each other, the impenetrability of both acts equally ; and it is by their joint operation, that the force neceffary to prevent the penetration is fupplied: we then fay, that they act upon each other, and that the force, refulting from their impenetrability, produces this effect. This force acts upon both of them ; for as they have a tendency toward mutual penetration, it repels both the one and the other, and thus prevents their penetration.

It is certain, then, that bodies may act upon each other ; and we fpeak fo frequently of this action, as when two billiard balls clafh, it is faid, the one acts upon the other, that you muft be well acquainted with this mode of expreffion. But it mult be carefully remarked, that, in general, bodies do not act upon each other, but in fo far as their ftate becomes contrary to impenetrability; from whence refults a force capable of changing it, precifely fo much as is neceffary to prevent any penetration; fo that a fmall force would not have been fufficient to produce this effect.

It is very true, that a greater force would, likewife, prevent the penetration ; but when the change produced in the ftate of bodies is fufficient to prevent mutual penetration, the impenetrability acts no farther, and there refults from it the leaft force that is capable of preventing the penetration. Since, then, the force is the fmalleft, the effect which it produces, that is, the change of fate which it operates, in order to prevent penetration, will be proportional; and, confequently, when two or more bodies come into contact, fo that no one could continue in it's fate without penetrating the others, a mutual action muft take place, which is always the fmalleft that was capable of preventing penetration.

You will find here, therefore, beyond all expectation, the foundation of the fyftem of the late Mr. de Maupertuis, fo much cried up by fome, and fo violently attacked by others. His principle is, that of
the leaft poffible action; by which he means, that, in all the changes which happen in nature, the cure which produces them, is the leaft that can be.

From the manner in which I have endeavoured to unfold this principle to you, it is evident, that it is perfectly founded in the very nature of body, and that thofe who deny it, are much in the wrong, though ftill lefs than thofe who would turn it into ridicule. You will already, perhaps, have remarked, that certain perfons, no great friends to Mr. de Maupertuis, take every opportunity of laughing at the principle of the leaft pofible action, as well as at the hole continued down to the centre of the earth; but, fortunately, truth fuffers nothing by their pleafantry.

$$
22 d \text { Nov. 1;60. }
$$

LETTER LXXIX.

On the Queftion, Are there any other Species of Powers?

THE origin of powers, founded on the impene. trability of bodies, which I have been endeavouring to explain, is by no means inconfiftent with the opinion of thofe who maintain, that the fouls of men, and thofe of beafts, have the power of acting on their bodies. There is nothing to hinder the exiftence of two kinds of power, which produce all the changes that take plnce in the world; the one corporeal, which derives it's origin from the impenetrability
netrability of bodies : and the other fpiritual, which the fouls of animals exercife over their bodies : but this laft power operates only upon animated bodies; and the Creator has fo clearly diftinguifhed it from the other, that it is not permitted, in philofophy, to confound them.

But this diftinction greatly embarraffes thofe, who confider attraction as an inherent quality of bodies; for, if they act upon each other, only to maintain their impenetrability, attraction cannot be referred to this cafe. Two diftant bodies may preferve each it's fate, without at all interefting their impenetrability, and without there being any reafon, of confequence, why the one fhould act upon the other, even by attracting it.

Attraction, therefore, ought to be referred to a third fpecies of power, which fhould be neither cor.poreal nor fpiritual. But it is always contrary to the rules of a rational philofophy to introduce a new fpecies of powers, before their exiftence is inconteftably demonftrated. It would have been neceffary, therefore, for this effect, to have proved, beyond contradiction, that the powers by which bodies mutually attract, could not derive their origin from the fubtile matter which furrounds them; but this impoffibility is not yet demonftrated. It would appear, on the contrary, that the Creator has exprefsly filled the whole fpace of the heavens with a fubtile matter, to give birth to thefe powers, which impel bodies toward each other, conformably to the law, before eftablifhed, refpecting their impenetrability.

In fact, the fubtile matter might very well have a motion fuch as that a body in it fhould not be able to preferve it's ftate, without being penetrated by it; and then this force muft be derived, as well from the impenetrability of the fubtile matter, as from that of the body itfelf.

Were there a fingle cafe in the world, in which two bodies attracted each other, while the intermediate fpace was not filled with a fubtile matter, the reality of attraction might very well be admitted; but as no fuch cafe exifts, we have, confequently, reafon to doubt, nay, even to reject it. We know, then, but two fources of all the powers which produce thefe changes, the impenetrability of body, and the action of fpirit.

The difciples of Wolff reject, likewife, this law, and maintain, That no fpirit, or immaterial fubftance, can act upon a body; and they are very much embarraffed, when it is alleged, that, according to them, God himfelf, who is a fpirit, could not have the power of acting upon bodies, which favours ftrongly of atheifm. They are, accordingly, reduced to this feeble reply, that it is by infinity God is able to act upon body; but if it be impoffible for a fpirit, as a fpirit, to act upon a body, this impotence neceffarily recoils on God himfelf. And who can deny, that our foul acts upon our body? I am to fuch a degree mafter of my members, that I can put them in action as I pleafe. The fame thing may be affirmed, likewife, of the brute creation; and as, according to the fyftem of Defcartes, at which we have gnod Vol. I.

X
reafon
reafon to finile, beafts are mere machines, without any feeling, like a watch, as the Wolfians would have it, men too are merely machines.

Thefe fame philofophers, in their fpeculations, go, Hikewife, fo far as to deny the firft fpecies of powers, of which they know nothing. For, not being able to comprehend how one body acts upon another, they boldly deny it's action, and maintain, that all the changes which befall a body, are produced by it's own powers.

They are the philofophers whom I formerly mentioned, as denying the firft principle of mechanics, refpecting the prefervation of the fame fate, which is fufficient to fubvert their whole fyftem. The error into which they have fallen, as I have already remarked, arifes from their reafoning inconclufively refpecting the phenomena which bodies prefent to us. They concluded precipitately, from obferving almoft ali bodies continually changing their ftate, that they contained in themfelves the powers, by which they inceffantly exert themfelves to change it, whereas they ought to have drawn the directly oppofite conclufion.

It is thus, that, by confidering objects in a fuperficial manner, we hurry into the groffeft errors. I have already pointed out the defects of this reafoning ; but, once fallen into error, they have abandoned themfelves to the moft abfurd ideas. They, firft, afcribed thefe internal powers to the primary elements of matter, which, according to them, are continual efforts to change their ftate, and concluded
from it, that all the changes to which every element is fubjected, are produced by it's own power, and that two elements, or fimple beings, cannot act upon each other. This being laid down, it was neceffary to diveft fpirits, as fimple beings, of all power of acting upon body, excepting, however, the Supreme Being; and then, as bodies are compoied of fimple beings, they were under the neceffity of denying, alfo, that bodies could act upon each other.

It was in vain to object to them, the cafe of bodies which clafh, and the change of their ftate, which refults from it. Obftinately prepoffeffed in favour of the folidity of their reafoning, they fcorned to abandon it : they chofe rather to affirm, that every body, from it's own nature, produces the change which befalls it, and that the collifon has nothing to do with it ; that it is a mere illufion which makes us believe the collifon to be the caufe of it; and they go off in triumph at the fublimity of a philofophy, fo far beyond the comprehenfion of the vulgar. You are now in a condition to eftimate it, according to it's real importance.

> 25 th November, 1760.

L E T TER LXXX.

Of the Nature of Spirits.

IFLATTER myfelf, that you are now convinced of the folidity of the reafonings, on which I have eftablifhed the knowledge of bodies, and that of the
powers which change the fate of them. The whole is founded on experiments the moft decifive, and on principles dictated by reafon. They involve no abfurdity, nor are they contradicted by other principles, equally certain. It is not long fince any fuccefsful progrefs was made in refearches of this kind. Such ftrange ideas were, formerly, entertained refpecting the nature of bodies, that all kinds of powers were afcribed to them, of which fome muft neceffarily deftroy the others.

Certain philofophers have even gone fo far, as to imagine, that matter itfelf might be endowed with the faculty of thought. Thefe gentlemen, known by the name of materialifts, maintain, that our fouls, and all fpirits, in general, are material ; or rather, they deny the exiftence of fouls and fpirits. But when once we have got into the right road to the knowledge of bodies; the inertia; by virtue of which they continue in their ftate; and impenetrability, that quality by which they are fubjected to powers capable of changing it ; all thofe phantoms of powers, to which I alluded, vanifh away, and nothing appears a more glaring abfurdity than to affirm, that matter is capable of thought. To think, to judge, to rea. fon, to poffefs mental feeling, to reflect and will, are qualities incompatible with the nature of bodies; and beings invefted with them, muft be of a different nature. Such are fouls and fpirits; and He who poffeffes thofe qualities in the higheft degree, is God.

There is, then, an infinite difference between body and fpirit. Extenfion, inertia, and impenetrability, qualities
qualities which exclude all thought, are the properties of body: but fpirit is endowed with the faculty of thinking, of judging, of reafoning, of feeling, of reflecting, of willing, or of determining, in favour of one object preferably to another. There is here neither extenfion, nor inertia, nor impenetrability; thefe material qualities are infinitely remote from fipirit.

It is afked, What is a fpirit? I acknowledge my ignorance in refpect of this, and I reply, That we can: not tell what it is, as we know nothing of the nature of firit.

But it is not the lefs certain, that this world contains two kinds of beings ; beings corporeal or material, and beings immaterial or /piritual, which are of a nature entirely different, as they manifeft themfelves to us by properties which have no relation to each other. Thefe two fpecies of beings are, neverthelefs, moft intimately united, and upon their union, principally, depend all the wonders of the world, which are the delight of intelligent beings, and lead them to glorify their Creator.

It is certain, that fpirits conftitute the principal part of the world, and that bodies are introduced into it merely to ferve them. For this reafon it is, that the fouls of animals are in an union fo intimate with their bodies, Not only do the fouls perceive all the impreffions made upon their bodies; but they have the power of acting upon thefe bodies, and of producing in them correfponding changes : and thus
they exercife an active influence over the reft of the world.

This union of the foul with the body, undoubtedly, is, and ever will be, the greateft myftery of the divine Omnipotence, a myftery which we fhall never be able to unfold. We are perfectly fenfible, that the human foul cannot act immediately on all the parts of the body; as foon as a certain nerve is cut, I can no longer fold my hand: from which it may be concluded, that the foul has power only over the extremities of the nerves, which all terminate and unite in a portion of the brain, the place of which the moft fkilful anatomift is unable exactly to affign. To this, then, the power of the foul is reftricted. But that of God, being unlimited, extends to the whole univerfe, and exerts itifelf by means which far exceed our comprehenfion.

19th November, 1 1 60 ,

LETTER LXXXI.

Of the Union between the Soul and the Body.

AS fpirits and bodies are beings, or fubftances, of a nature totally different, the world contains, then, two kinds of fubftances, the one fpiritual, and the other corporeal, or material. The ftrict union which fubfifts between them merits a very particular attention.

This union of foul and body, in every animal, is a moft wonderful phenomenon. It is reduced to two things, the one, that the foul feels, or perceives, all the changes which befall it's body, by means of the fenfes, which, as you know perfectly well, are five in number, namely, feeing, hearing, fmelling, tafting, and touching. By thefe, then, the foul takes cognizance of every thing that paffes, not only in it's own body, but out of it. Touching and tafting reprefent to it thofe objects only which are in immediate contact with the body ; fmelling, objects at a finall diftance; hearing extends to diftances much more remote; and fight procures for us the knowledge of the moft diftant objects.

All this knowledge is acquired, only in fo far as the objects make an impreffion on fome one of our fenfes, but ftill, this is not fufficient, it is neceffary, that the organ of fuch fenfe fhould be perfectly found, and the nerves belonging to it muft not be deranged. You will recollect, that, in order to fee, the objects muft be painted diftinctly in the bottom of the eye, on the retina ; but ftill, this reprefentation is not the object of the foul; one may be blind, though it is perfectly well expreffed, The retina is a contexture of nerves, the continuation of which extends to the brain; and if this continuation is interrupted by any injury done to this nerve, called the optic nerve, there will be no fight, however perfect the reprefentation on the retina may be.

It is the fame with refpect to the other fenfes, all of which operate by means of nerves deftined to con.
vey the impreffion made on the organ, emploved in the fenfation, up to it's firft origin in the brain. There is, then, in the brain, a certain place where all the nerves terminate; there the foul refides, and there perceives the impreffions made upon it by means of the fenfes.

From thefe impreffions, the foul derives all the lnowledge it has of things out of itfelf; thence it derives it's firft ideas, and by their combination forms judgments, reflections, reafonings, and every thing neceflary to perfect it's knowledge ; fuch is the work of the foul, in which the body has no flare. . But the frif imprefion comes to it from the fenfes, through the bodily organs: and the firf faculty of the foul is to perceive, or to feel, what paffes in that part of the brain, in which all the fenfitive nerves terminate. This faculty is denominated feeling, or fenfation, and the foul, nearly paffive, does nothing, in the firf infance, but receive the impreffions which the body prefents to it.

But it poffeffes, in it's turn, an active faculty, by means of which it has the power of influencing it's body, and of producing motions in it, at pleafure : in this confifts it's power over the body. Thus I am able to move my hands and my feet by an act of my will; and, What motions are my fingers making, as I write this letter? My foul, however, cannot act immediately on any one of my fingers; in order to: put a fingle one in motion, it is neceffary that fevemal mufcles fhould be put in action, and this action, again, exerts itfelf by means of nerves terminating
in the brain: if fuch a nerve be injured, to no purpofe will I wifh my finger to move; it will no longer obey the orders of my foul: thus the power of my foul extends only to a fmall portion of the brain, where all the nerves unite ; fenfation is likewife reftricted to this place of the brain.

The foul, then, is united only with thefe extremities of the nerves, on which it has not only the power of acting, but by means of which it can view, as in a mirror, every thing that makes an impreffion on the organs of it's body. What wonderiul addrefs, to be able to conclude, from the flight changes which take place in the extremity of the nerves, that which occafioned them out of the body!

A tree, for example, produces on the retina, by it's rays, an image which is perfectly fimilar to it : but how feeble mutt the impreffion be which the nerves receive from it! It is this impreffion, however, continued along the nerves up to their origin, which excites in the foul the idea of that tree. Afterwards, the flighteft impreffions which the foul makes on the extremities of the nerves, are inftantly communicated to the mufcles, which, put in action; oblige the member which it wills to move, exactly to obey it's orders.

Machines, which receive certain motions by the drawing of a frring, prefent but a coarfe mechanifm, compared to our bodies and the bodies of animals, The works of the Creator infinitely furpafs the productions of human ikill,
$2 d$ December, i760.
LETTER

LETTER LXXXII.

Different Sy/tems, relative to this Subject.

IN order to elucidate the twofold union of foul and body, we may compare the foul to a man, who contemplates, in a dark room, the external objects, and from their images derives the knowledge of what is paffing out of the room. The foul viewing, in like manner, if I may fo exprefs myfelf, the extremities of the nerves, which unite in a certain part of the brain, perceives all the impreffions made upon the nerves, and arrives at the knowledge of the external objects, which have made thefe impreffions on the organs of fenfe. Though we do not know wherein confifts the refemblance of the impreflions made on the extremities of the nerves, with the objects themfelves which occafioned them, they are, however, very proper to fupply the foul with a very juft idea of them.

The action by which the foul, operating on the extremities of the nerves, can put in motion, at pleafure, the members of the body, may be compared to that of a player on puppets, who, by pulling a ftring, makes them ftrut about, and move their limbs as he pleafes. This comparifon is, however, very imperfect, for the union of the foul and body is infinitely more intimate.

The foul is not fo indifferent, in refpect of feeling, as the man placed in the dark room; it is much more
deeply interefted in what is going on. There are fenfations highly agreeable to it, and others very difagreeable, and even painful. What more difagreeable than acute pain, though it proceed but from a bad tooth? This, however, is no more than a nerve irritated in a certain manner, and yet it excites, in the foul, pain intolerable.

In whatever light we confider the frict union of foul and body, which conftitutes the effence of a living man, it muft ever remain an inexplicable myftery; and, in all ages, philofophers have taken fruitlefs pains, in the hope of arriving at a fatisfactory folution. Various fyftems have been devifed in this view.

The firft is, that by which a real influence is eftablifhed of body on foul, and of foul on body; fo that the body, by means of the fenfes, fupplies the foul with it's firft perceptions of external things; and that the foul, by acting immediately on the nerves, in their origin, excites in the body the motion of it's members; though it is, at the fame time, acknowledged, that the manner of this mutual influence is abfolutely. unknown to us. We muft, undoubtedly, have recourfe to the omnipotence of God, who has given to every foul, a power over the portion of matter containing the extremities of the nerves of the body, fo that the power of every foul is reftricted to a fmall part of the body, whereas the power of God extends to all the bodies of the univerfe. This fyftem feems the moft conformable to truth, though we are very far from pretending to have a particular knowledge of it.

The other two fyftems are the invention of philofophers, who boldly deny the poffibility of a real influence of fpirit upon badies; though they are under the neceffity of allowing it to the Supreme Being. According to them, the body cannot fupply the foul with the firft ideas of external things, nor the foul produce any motion in the body.

Orie of thefe two fyftems was the invention of Defcartes; it goes ty the name of the fyfeni of occafional caufes. According to this philofopher, when the organs of fenfe are excited by exterior bodies, God immediately impreffes on the foul, at the fame inftant, the ideas of thefe bodies; and when the foul wills, that any member of this body fhould move, ftill it is God, who immediately impreffes, on that member, the motion defired, but all the while, the foul is in no manner of connection with it's body. It was, therefore, altogether unneceffary, that the body fhould be a machine of fuch admirable conftruction, as the dulleft mafs would have anfwered the purpofe equally well.

This fyftem, accordingly, foon loft much of it's credit, when the celebrated Leibnitz fubftituted, in it's place, that of the pre-eftablifhed harmony, which you have, no doubt, frequently heard mentioned in converfation.

According to this fyftem of pre-eftabli/bed barmony, the foul and the body are two fubftances out of all connection, and exercifing no manner of influence on each other. The foul is a fpiritual fubftance, which, from it's own nature, receives, or affumes, all it's
ideas, it's thoughts, it's perceptions, without the body's having the leaft fhare in the matter; and the body is a machine moft ingenioufly conftructed, like a clock, which produces all it's motions, in fucceffion, without any manner of influence on the part of the foul. But God, having forefeen, from the beginning, all the refolutions, which every foul would at every inftant form, arranged the machine of the body, fo as that it's motions fhould, at every inftant, harmonize with the refolutions of the foul. Thus, when I at this moment raife my hand, Leibnitz fays, that God having forefeen my foul would will, at this moment, my hand to be raifed, difpofed the machine of my body in fuch a manner, that, in virtue of it's proper organization, my hand fhould neceffarily rife at the fame inftant; and, in like manner, that all the motions of the members of the body are performed in virtue of their proper organization, which has been, from the beginning, fo difpofed, as to be at all times in harmony with the determinations of the foul.

6th December, 1760.

LETTER LXXXII.

Examination of the Syfem of pre-efablifbed Harmony. An Objection to it.

THERE was a time, when the fyftem of pre-eftablifhed harmony had acquired fuch a high reputation over all Germany, that to dare to call it
in queftion was to incur the imputation of ignorance, or bigotry. The fupporters of this fyftem boafted, that, by means of it, the omnipotence and omnifcience of the Supreme Being were fet in their cleareft light, and that it was impoffible for any one, who believed in thefe exalted perfections of God, to entertain a doubt of the truth of this fublime fyftem.

In fact, fay they, we fee, that poor, pitiful mortals, are capable of conftructing machines fo ingenioufly, as to fill the vulgar fpectator with aftonifhment: how much ftronger reafon, then, have we to admit, that God having known, from all eternity, all that my foul would wifh and defire, at every inftant, fhould have been able to conftruct fuch a machine, which, at every inftant, fhould produce motions conformable to the determinations of my foul? Now, this machine is precifely my body, which is united to my foul, only by this harmony; fo that if the organization of my body were deranged to fuch a degree, as to be no longer in harmony with my foul, this body would no more belong to me, than the body of a rhinoceros in the heart of Africa: and if, in the cafe of a derangement of my body, God fhould adjuft that of a rhinoceros, fo that it's motions were in fuch harmony with the determinations of my foul, as to raife it's paw at the moment I willed it; this body would then be mine, and would belong to my foul, as my prefent body now belongs to it, without having undergone itfelf, on that account, any change whatever.

Mr. Leibnitz himfelf has compared the foul and the
body to two clocks, which continually indicate the fame hour. A clown who fhould fee this beautiful harmony of thefe two clocks, would undoubtcdly conclude, that they acted upon each other, but he would be under a miftake, for the one performs it's motions independently of the other. The foul and the body are likewife two machines totally independent, the one being fpiritual, the other material ; but their operations are always in a harmony fo complete, that we are induced to believe them to belong to each other, and that the one has a real influence upon the other, which is, however, a mere illufion.

In order to form a judgment of this fyftem, I remark, firft, That it cannot be denied to be poffible for God to create a machine which fhould be always in harmony with the operations of my foul; but it appears to me that my body belongs to me by other rights than fuch a harmony, however beautiful it may be: and, I believe, you will not be difpofed haftily to adopt a fyftem which is founded on this principle alone, that no fpirit can act upon a body; and that, reciprocally, a body cannot act upon, or fupply ideas to, a fpirit. This principle is, befides; deftitute of all proof, the chimeras of it's partifans, refpecting fimple beings, having been completely refuted. And if God, who is a fpirit, has the power of acting upon bodies, it is not abfolutely impoffible that a fpirit, fuch as the human foul, fhould be able likewife to act upon a body. Accordingly, we do not pretend to fay, that our foul acts upon all bodies, but only upon a fmall particle of matter, with
refpect to which it has received the power of God himfelf, though to exercife it in a manner which we are utterly unable to comprehend.

Farther, the fyftem of pre-eftablifhed harmony labours under other great difficulties. According to it the foul derives all it's knowledge from it's own proper fund, without any contribution on the part of the body and the fenfes. Thus, when I read in the Gazette that the Pope is dead, and I come to the knowledge of the Pope's death, the Gazette and my reading have nothing to do with the communication of this knowledge, as thefe circumftances refpect only my body and my fenfes, which have no manner of connection with my foul. But, conformably to this fyftem, my foul derives, at the fame time, from it's own proper fund, the ideas which it has of this fame Pope. It concludes, he muit abfolutely be dead, and this knowledge comes to it with the reading of the Gazette, fo that I imagine the reading of the Gazette furnifhed me with this knowledge, though I really derived it from the proper fund of my foul.

But this idea is perfectly abfurd. How was it poffible for me fo boldly to affert, that the Pope muft neceffarily have died at the moment mentioned in the Gazette, and that, only from the idea which I had of the Pope's condition and health, though, perhaps, I knew nothing about him, while I am infinitely better acquainted with my own fituation, without knowing, however, what fhall befall me tomorrow.

In like manner when you do me the honour to
read thefe letters, and derive the knowiedge of fome truth from them, it is your foul which extracts that truth from it's own proper fund, without my contributing at all to it by my letters. The reading of them ferves only to maintain the harmony which the Creator meant to eftabliih between the foul and the body. It is only a formality, altogether fuperfluous, with refpect to the knowledge itfelf. I fhall, neverthelefs, continue to tender you my inftructions. 9th December, 1760 .

LETTER LXXXIV.

Another Objection.

THERE is another objection to be made to the fyftem of pre-eftablifhed harmony; namely, that it is utterly deftructive of human liberty. In fact, if the bodies of men are machines, fimilar to a watch, all their actions are a neceffary confequence of their confruction. Thius, when a thief fteals my purfe, the motion made by his hands is an effect as neceflary of the machine of his body, as the motion of the hand of my clock, now pointing to nine. You will readily comprehend what muft be the conclufion. As it would be unjuft, nay, ridiculous, to think of being angry at the clock, and of chaftifing it, becaufe it pointed to nine, it would be equally fo, with refpect to the thief, whom it would be abfurd to punifh for having ftolen my purfe.

Vol. I.

Of this we had a well-known example in the reignt of his late Majefty, when Mr. Wolff taught at Halle the fyftem of the pre-eftablifhed harmony. The King informed himfelf of this doctrine, which was then making a prodigious noife ; and one of his Court having fuggefted to him that, according to Mr. Wolff's doctrines, foldiers were mere machines, and that when one deferted, it was a neceflary confequence of his particular ftructure, and therefore ought not to fubject him to punifhment, as would be the cafe, were a machine an object of punifhment, for having performed fuch and fuch a motion ; the King was fo provoked at this reprefentation, that he gave orders to banifh Wolff from Halle, with certification, that if he was found there at the end of twenty-four hours, he fhould be hanged up. The philofopher upon this took refuge at Marburg, where I converfed with him foon after.

But the partifans of this fyftem have always maintained that the pre-eftablifhed harmony by no means encroached on human liberty. They admit that the exterior actions of men are neceffary effects of the organization of the body, and that, in this refpect, they take place as neceffarily as the motions of a watch: but that the mental determination enjoyed perfect liberty : that thefe may be deferving of punifhment, though the corporeal action was neceffary: that the criminality of an action confifts lefs in the act, or motions of the body, than in the refolution or intention of the foul, which remains entirely free. Let us conceive, fay they, the foul of a thief, determining
mining, at a certain time, to commit a robbery: God having forefeen this intention, has provided it with a body, organized in fuch a manner as to produce, precifely at the fame time, the motions requifite for the commiffion of this robbery: the action, fay they, is itfelf the neceffary effect of the organization of the body, but that the intention of the thief is a free act of his foul, which is not, on that account, lefs culpable and lefs punifhable.

Notwithftanding this reafoning, the fupporters of the fyftem of pre-eftablifhed harmony will always find themfelves very much embarraffed to maintain the liberty of the determinations of the foul. For, according to them, the foul is itfelf fimilar to a machine, though of a nature totally different from that of the body ; the reprefentations produced in it are occafioned by thofe which precede, and thefe again by others anterior to them, and fo on, fo that they follow each other as neceffarily as the motions of a machine. In fact, fay they, men act always from certain motives, founded on the reprefentations of the-foul, which fucceed each other, conformably to it's ftate.

You will recollect that, according to this fyftem, the foul derives no one idea from the body, not being in any real connection with it; but all from it's own proper fund. Prefent ideas flow from thofe which preceded, and are a neceffary confequence of them; fo that the foul is nothing lefs than mafter of it's own ideas, which generate it's refolutions, and which are therefore as little under it's power: and,
confequently, all it's actions are founded on it's prefent fate, that on the immediatcly preceding, and fo on, are a neceffary effect of the firft ftate in which it was created, over which it certainly could have no power, and, of confequence, could not be free. In depriving men of their liberty, all their actions become neceffary, and can no longer be confidered as either right or criminal.

No one of thofe philofophers has hitherto been able to remove thefe difficulties; and their adverfaries have a right to object to them, that this opinion is fubverfive of all morality, and makes every crime which men commit to recoil on God himfelf, which is, undoubtedly, the groffeft impiety. We muft not, however, load them with the imputation of fuch confequences, though they flow very naturally from their principles. The article of liberty is a fumbling block in philofophy; and it is extremely difficult to fteer clear of the dangers which prefs on all fides.*
${ }^{13} 3^{\text {th }}$ Decernber, 1760.

* The King of Pruffia (Frederick II.) though no believer in the pre-eftablifhed harmony, haftened to do juftice to Wolff, the momint he mounted the throne. The original caufe of his perfecution was the refentment of an ecclefiaftic, jealous of W ol f, as V oetius was of D.fartes. The pride of men of this defcription has long encleavoured to fubject thought itfelf to their opinions or to their intereft; but the world begins to entertain for them the horsor and the contempt which they deferve.*

Befides, thefe objedions refpecting liberty are not peculiar to

[^33]
LETTER LXXXV.

> Of the Liberty of Spirits ; and a Reply to Objections agraingt Liberty.

THE greateft difficulties on the fubject of liberty, even thofe which appear infurmountable, arife from want of diftinguifhing, with fufficient attention, between the nature of fpirit and that of body. The Wolfian philofophers even go fo far as to put fpirits, and the elements of body, on the fame footing, and give to both the one and the other the name of monads, the nature of which, according to them, confifts in the power of changing their ftate; from whence refult all the changes in bodies, and all the reprefentations and actions of fpirits.

Since, then, in this fyftem, the actual fate of bodies and of fpirits derives it's determination from that which immediately preceded; and as the actions of fpirits are derived, like thofe of bodies, from their preceding ftate, it is evident, that liberty is no more an attribute of fpirit than it is of body. As to body, it is impoffible to conceive the leaft fhadow of liberty in it ; for liberty always fuppofes the power of committing, of admitting, or of fufpending an action,
the fyftem of .pre-eftablified harmony, but common to all. It is certain that in fuch and fuch circumftances I will periorm fuch an action, and yet I fhall have the power of acting otherwile. This action will infallibly tuke place but not neceffitrily. This is the real difficulty. - F. E.
and this is directly oppofite to all that paffes in body. Would it not, then, be ridiculous to expect that a watch fhould point to any other hour than what it actually does, and to think of punifhing it on that account? Would it not be abfurd to fly into a paffion at a puppet, becaufe, after feveral other geftures, " it had turned it's back to us?

All the changes which take place in bodies, and which are all reducible to their ftate of reft, or of motion, are the neceffary confequence of the powers which act upon them ; and their action once admitted, no changes in bodies can take place, but precifely fuch as do take place: what refpects body, therefore, is an object of neither praife nor blame. However ingenioufly a piece of mechanifm may be conftructed, the commendation which we beftow upon it reverts to the artift ; the machine itfelf has no intereft in what paffes; the artift, too, is alone refponfible for the defects of a clumfy and aukward machine; the machine itfelf is perfectly innocent. While, therefore, the enquiry is reftricted to bodies, they are clearly in no refpect refponfible; no reward, no punifhment can poffibly attach to them; all the changes and motions produced in them, are the neceffary confequences of their ftructure.

But fpirits are of a very different nature, and their actions depend on principles directly oppofite. Liberty, entirely excluded from the nature of body, is the effential portion of fpirit, to fuch a degree, that without liberty, a fpirit could not exift; and this it is which renders it refponfible for it's actions. This
property is as effential to fpirit as cxtenfion or impenetrability is to body; and as it would be impoffible for the divine Omnipotence itfelf to diveft body of thefe qualities, it would be equally impoffible for it to diveft fpirits of liberty. A fpirit without liberty, would no longer be a fpirit, as a body without extenfion would no longer be a body.

It has in all ages been a fubject of eager enquiry among philofophers, How God could have permitted fin to enter into the world? Had they reflected that the fouls of men are beings neceffarily free, from their very nature, the controverfy would have been eafily fettled.

The objections commonly made to human liberty are thefe : A fpirit, it is faid, or a man, is never determined to an action, but from motives; and after having carefully weighed the reafons on both fides, he finally decides in favour of that which he deems the preferable. Hence they conclude that motives determine the actions of men, juft as the motion of a ball on the billiard table is determined by the ftroke impreffed upon it, and that the actions of men are no more free than the motion of the ball. But it muft be confidered that the motives which engage a man to undertake any enterprize, refer very differently to the foul, from what the ftroke does to the ball. The ftroke produces it's effect neceffarily; but a motive, however powerful, prevents not the action from being voluntary. I had very powerful motives to undertake a journey to Magdeburg: a regard to my promife ; the profpect of enjoying the felicity of
paying my refpects to your Highnefs ; but I am perfectly fenfible, at the fame time, that I was not forced to it : and that it was entirely in my own power to take that journey, or to have remained at Berlin. But a body, impeiled by any power, neceffarily obeys, and it cannot be affirmed that it was at liberty to obey, or not, as it pleafed.

The motive which determines a fpirit to regulate it's refolves, is of a nature wholly different from a caufe or force acting upon body. Here, the effect is produced neceflarily; and there, the effect remains always voluntary, and the foul has power over it. On this is founded the imputability of the actions of a fpirit, which makes it refponfible for them, and which is the true foundation of right and wrong. As foon as we have fèttled this infinite difference between fpirit and body, the queftion refpecting liberty prefents very little difficulty.

> 16th December, 1760.

L E T T E R LXXXVI.

The fame Subject continued.

THE difference which I have juft eftablifhed between the motives, conformably to which fpirits act, and the caufes or powers which act on bodies, difcovers to us the true foundation of liberty.

Imagine a puppet fo artfuily conftructed with wheels and fprings, as to be able to approach my
pocket, and to pick out my watch, without my perceiving it. This action being a neceffary confequence of the organization of the machine, could not be confidered as a robbery; and I fhould render myfelf ridiculous if I got into a paffion at it, and infifted on having the machine hanged. Every one would fay that the puppet was innocent, and incapable of committing a blameable action; it would be, befides, equally indifferent to the puppet to be hanged, or placed on a throne. But if the artift had contrived this machine on purpofe to fteal, and to enrich himfelf by fuch means, however much I might admire the ingenuity difplayed on the mechanifm, I fhould reckon myfelf obliged to bring him to juftice as a thief. It follows, then, that even in this cafe the criminality reverts upon an intelligent being, or a fpirit, and that fpirits alone are refponfible for their actions.

Let every man examine his own actions, and he will always find that he was not forced into them, though he might be induced by motives. If his actions are commendable, he is perfectly confcious of meriting the praifes beftowed upon him. However he might be deceived in his other judgments, he cannot in this cafe ; the fentiment of his liberty is fo intimately connected with that liberty itfelf, that they are infeparable. It is poffible to entertain a doubt where the liberty of another is concerned, but it is impoffible ever to be deceived refpecting one's own. A clown, for example, on feeing the puppet above defcribed, might eafily imagine it to be a real thief,
thief, and that it likewife was a free agent : in this he would be miftaken ; but with refpect to his own liberty, it is impoffible for him to miftake; as he deems himfelf free, he is fo in fact. It might likewife happen, that the clown in queftion, undeceived as to the puppet, fhould afterwards confider a dexterous thief as a machine, deftitute of all fentiment, and of liberty : here he would fall into the oppofite error, but as to his own actions, he will never be miftaken.

It would, therefore, be ridiculous to affirm, that it might be poffible for a watch to imagine that it's hand turned freely, and to believe that it now points to nine, becaufe it pleafes to do fo, but could point to any other hour, if it thought proper: the watch would undoubtedly deceive itfelf. But the whole fuppofition is manifeftly abfurd. You muft firf afcribe to the watch fentiment and imagination, and accordingly fuppofe it a fpirit or foul, which neceffarily implies liberty; and afterwards confider it as a mere machine, divefted of liberty, which is a mam nifeft contradiction.

Another objection, however, is ftarted againft liberty, founded on the divine prefcience. God, it is faid, forefaw, from all eternity, every refolution which I fhould form, and every action which I fhould do, during every inftant of my life. If God forefaw I hoould juft now continue to write, that I fhould, by and by, lay down my pen, and rife to take a walk, my action would be no longer free, for I am under the neceflity of writing, of laying down the
pen,
pen, and of rifing to walk ; and it would be imporfible for me to act otherwife, as it was impoffible God fhould be deceived in what he forefees?

The reply is obvious. Becaufe God forefaw, from all eternity, that I fhould perform, on fuch a day, fuch an action, it does not follow that I fhall perform it, becaufe God forefaw it. For it is evident that it ought not to be alleged, in the caufe fuppofed, That I go on to write, becaufe God forefaw I fhould go on to write; but, on the contrary, as I judge it proper to go on to write, God forefaw that I would do fo. Thus the prefcience of God by no means encroaches on my liberty; and all my actions remain equally at liberty, whether God forcfaw them or not.

Some, however, in the view of fupporting liberty, have gone fo far as to deny the divine prefcience; but ycu will have little difficulty in detecting the falfehood of this opinion. Is it fo furprifing that the Supreme Being, who is acquainted with all my propenfities, fhould be able to forefee the effect which every motive will produce on my foul, and, confequently, all the refolutions which I fhall form, in conformity to thefe effects, when fimple mortals, fuch as we are, frequently exercife a fimilar prefcience? You can eafily imagine to yourfelf a man extremely covetous, who has a fair opportunity of making a confiderable advantage. You know, for certain, he will not fail to avail himfelf of it.' Your knowledge of this, however, has no influence upon the man; he goes into it with the full determination of his own mind, as if you had never fpent a thought upon him.
him. Now, as God is infinitely better acquainted with men, and all their difpofitions, it is not to be doubted that he could have forefeen their actions, in all fituations. The prefcience of God, with refpect to the free actions of fpirits, is, neverthelefs, founded on another principle than that of the changes which muft take place in the corporeal world, where all is under the power of neceffity. This diftinction fhall be the fubject of my next letter.

20th December, 1760.

LETTER LXXXVII.

Influence of the Liberty of Spirits, upon Events.
IF the world contained bodies only, and if the changes which take place in it, were neceffary confequences of the lavvs of motion, conformably to the powers with which they act upon each other, all events would be necenary, and would depend on the firf arrangement which the Creator had eftablifhed of the bodies of the univerfe; fo that this arrangement, once eftablifhed, it fhould be impoffible for other events afterwards to take place, than thofe which happen in the actual order of things. The world would, undoubtedly, be in this cafe, a mere machine, fimilar to a watch, which, once wound up, afterwards produces all the motions by which we meafure tim ρ.

Imagine to yourfelf a mufical clock; fuch a clock, pnce regulated, all the motions which it performs, and
and the airs which it plays, are produced in virtue of it's conftruction, without any frefh application of the hand of the mafter, and, in that cafe, we fay it is done mechanically. If the artift touches it, by changing the notch, or the cylinder, which regulates the airs, or ly winding it up, it is an external action, which, not being founded on the organization of the machine, no longer appertains to it. And if God, as Lord of the univerfe, thould change immediately any thing in the courfe of fucceffive events, this change would no longer appertain to the machine: it would then be a miracle.

A miracle, confequently, is an immedizie effect of the divine Omnipotence, which could not have taken place, had God left the machine of the univerfe freely to take it's courfe. Such would be the fate of the univerfe, if it contained bodies only; in that cafe it might be faid, that all events take place in it from an abfolute neceffity, each of them being a neceffary effect of the ftructure of the univerfe; unlefs it pleafed God to work miracles.

The fape thing would happen, on admitting the fyitem of pre-efablifhed harmony, though it allows the exiftence of fpirits; for, according to this fyrtem, fpirits do not act upon bodies, but thefe perform all their motions and actions only in virtue of their ftructure, once eftabliihed; fo that when I raife my arm, this motion is an effect as neceffary of the organization of my body, as that of the wheels in a watch. My foul, in no refpect, contributes to it ; it
is God who, from the beginning, arranged the matter, fo that the action of my body muft neceffarily refult from it, at a certain time, and raife the arm at the inftant that my foul willed it. Thus, my foul has no influence upon my body, any more than upon thofe of other men and of animals: and, confequently, according to this fyftem, the univerfe is merely corporeal, and events are a neceffary effect of the primitive organization which God has eftablifhed in the univerfe.

But, if we allow to the fouls of men and of animals the power of producing motion in their bodies, which their organization, alone would not have produced, the fyftem of the univerfe is not a mere machine, and events do not neceffarily take place as in the preceding cafe.

The univerfe will prefent events of two kinds; the one, thofe over which fpirits have no manner of influence, which are corporeal, or dependant on the machine, as the motion and phenomena of the heavenly bodies; thefe take place as neceffarily as thofe of a watch, and depend entirely on the primitive eftablifhment of the univerfe. The others depend on the foul, united to the body of men and animals, and are no longer neceffary, as the preceding, but refult from the liberty, as from the will, of thefe fpiritual beings.

Thefe two kinds of events diftinguifh the univerfe from a mere machine, and raife it to a rank infinitely more worthy of the almighty Creator, who formed
it. The government of this univerfe will likewife ever infpire us with the moft fublime idea of the fovereign wifdom and goodnefs of God.
It is certain, therefore, that liberty, which is abfolutely effential to fpirits, has a very great influence on the events of the world. You have only to confider the fatal confequences of thefe wars, which all refult from human actions, determined by their will, or their caprice.

It is likewife certain, at the fame time, that the events which take place do not depend only on the will of men and animals. Their power is very limited, being refricted to a fmall portion of the brain, in which all the nerves terminate : and this action is confined to the communication of an impreffion of a certain motion on the members, which may afterwards operate on other bodies, and thefe again on others, fo that the flighteft motion of my body may have a very great influence on a multitude of events.

Man, however, though mafter of the firft motion of his body, which occafions thefe events, is not fo of the confequences of his action. Thefe depend on fo many circumftances, that the moft fagacious mind is incapable of forefeeing them: accordingly, we every day fee the beft concerted projects failing. But it is here that we muft acknowledge the government and providence of God, who, having from all eternity forefeen all the counfels, the projects, and the voluntary actions of men, arranged the corporeal world in fuch a manner, that it brings about, at all times, circumftances which caufe thefe enterprizes to
fail or to fucceed, according as his infinite wifdom judges to be moft fit. God thus remains abfolute fovereign of all events, notwithftanding the liberty of men, all whofe actions, though free, are, from the beginning, part of the plan which God intended to execute, when he created this univerfe.

This reflection plunges us into an abyfs of wonder and adoration at the infinite perfections of the Creator; while we confider that there is nothing fo mean in itfelf as not to be, from the beginning of the world, an object worthy of entering into the original plan which God propofed to himfelf.

23d December, 1760.

LETTER LXXXVIII.

Of Events, natural, fupernatural, and moral.

IN common life, we carefully diftinguifh events produced by corporeal caufes from thofe in which men and animals co-operate. Thofe of the former defcription are denominated natural events, or produced by natural caufes; fuch are the phenomena of the heavenly bodies, eclipfes, tempefts, whirlwinds, earthquakes, \&x. Thefe are called natural phenomena, becaufe it is underftood that neither men nor animals are active in the production of them.

If we fee a tree torn up by the roots, through the violence of the wind, we call it a natural effect: but if it were done by the ftrength of man, or the pro-
bofcis of an elephant, no one would call this a natural effect. When our plains are deluged by an inundation, or deftroyed by the hail, we fay the caufe of this calamity was natural; but if the mifchief were done by the invafion of an cnemy, we would no longer deem the caufe of it to be natural.

If fuch an evil were to be produced by a miracle, or by the immediate power of God, we would fay the caufe of it was fupernatural; but if the event were occafioned by men or animals, we would not, in that cafe, give it the name of either natural or fupernatural. We would characterize fuch an event fimply by the name of action, which denotes an effect that is neither natural nor fupernatural. It might with greater propriety be denominated moral, as it depends on the liberty of an intelligent agent.

Thus, when Quintus Curtius gives us a detail of the actions of Alexander the Great, he communicates to us the knowledge of the events brought about by the voluntary determinations of that hero. Such an action always fuppofes freedom of refolution in a fpiritual being; a power of determination which depends upon his will, and of which he is mafter. I fay, of which he is mafter ; for there is a great variety of motions, the production of which, were we to determine to will them ever fo much, we fhould not, however, be obeyed, becaufe over fuch movements we have no power.

I am not mafter even of all the motions performed in my own body; that of my heart and of my blood Vol. I.
is not fubject to my power, or to the empire of my foul, as the action which I perform when I write this letter. There are other motions which partake of the nature of both thefe, fuch as refpiration, which it is in my power to accelerate, or to retard to a certain degree, but of which I am by no means the abfolute mafter.

Language is not fufficiently rich to exprefs, by one appropriate term, all thefe different kinds of events. There are fome produced by, natural caufes merely, and which are neceffary confequences of the arrangement of bodies in the univerfe; and as thefe neceffarily come to pafs, the knowledge of this arrangement enables us to foretel a great number of them, fuch as the fituation of the heavenly bodies, eclipfes, and other phenomena depending on them, for any given time whatever. There are other events which depend only on the will of free and fpiritual beings, as the actions of every man and of every animal. It is impoffible for us to forefee any thing of thefe, in particular, unlefs by conjecture merely; and in this we are frequently very grofsly miftaken. God alone poffeffes this knowledge in a fupreme degree.

From thefe two kinds of events there arifes a third, in which natural caufes concur with fuch as are voluntary, and dependant on a being exercifing it's liberty. Of this the billiard table furnifhes an example. The frokes impreffed on the balls depend on the will of the players; but as foon as motion is communicated to them, the continuation of that motion,
motion, and their collifion with each other, or with the cufhion, are neceffary confequences of the laws of motion.

In general, mof of the events which take place on the earth, muft be referred to this fpecies, as there are fcarcely any over which men and animals have not fome influence. The cultivation and produce of our fields require, in the firft inftance, the voluntary exertions of men or beafts, but the fequel is an effect of caufes purely natural. It is accordingly of importance to remark, that God acts in a manner totally different toward bodies and fpirits. God has eftablifhed, for bodies, laws of reft and motion, conformably to which all changes neceffarily take place; as bodies are merely paffive beings which preferve themfelves in their ftate, or neceffarily obey impreffions made upon them by others, as I formerly explained; whereas fpirits are fufceptible of no force or conftraint, but are governed of God by precepts and prohibitions.

With refpect to bodies, the will of God is always perfectly accompliifhed; but with refpect to fpiritual beings, fuch as men, the contrary very often happens. When it is faid to be the will of God that men fhould love one another, we mean by that expreffion a commandment which men ought to obey; but this is very far from being the cafe. God does not force men to it, for this would be contrary to the liberty which is effential to them; but He endeavours to engage men to the obfervance of this
commandment, by propofing to them motives the moft powerful; but it always depends on the will of man, whether he is to obey or not. In this fenfe we are to underftand the will of God, when it refers to the free actions of fpiritual beings.
> $27^{7 t h}$ December, 1760.

LETTER LXXXIX

Of the Quefion refpecting the beft World pofible; and of the Origin of Evil.

YOU know well, that it has been made a queftion, Whether this world be the beft poffible? It cannot be doubted, that the world perfectly correfponds to the plan which God propofed to himfelf, when he created it.

As to bodies, and material productions, their arrangement and fructure are fuch, that certainly they could not have been better. Pleafe to recollect the wonderful ftructure of the eye, and you will fee the neceffity of admitting, that the conformation of all it's parts is perfectly adapted to fulfil the end in view, that of reprefenting diftinctly exterior objects. How much addrefs is neceffary to keep up the eye in that ftate, during the courfe of a whole life? The juices which compofe it muft be preferved from corruption; it was neceffary to make provifion, that they fhould be conftantly renewed, and maintained in a fuitable ftate.

A fructure equally marvellous is obfervable in all the other parts of our bodies, in thofe of all animais, and even of the vileft infects. And the ftructure of thefe laft, is fo much the more admirable, on account of their finallnefs, that it fhould perfectly fatisfy all the wants which are peculiar to each fpecies. Let us examinc only the fenfe of feeing in thefe infects, by which they diftinguifh objects fo minute, and fo near, as to efcape our cyes, and this examination alone will fill us with aftonifhment.

We difcover the fame perfection in plants: every thing in them concurs to their formation, to their growth, and to the production of their flowers, of their fruits, or of their feeds. What a prodigy to behold a plant, a tree, fpring from a fmall grain, caft into the earth, by the help of the nutritious juices with which the foil fupplies it? The productions found in the bowels of the earth are no lefs wonderful : every part. of nature is capable of exhaufting our utmoft powers of refearch, without permitting us to penetrate all the wonders of it's conftruction. Nay, we are utterly loft, while we reflect, how every fubftance, earth, water, air, and fire, concur in the production of all organized bodies; and, finally, how the arragement of all the heavenly bodies is fo admirably contrived, as perfectly to fulnil all thefe particular deftinations.

After having reflected in this manner, it will be difficult for you to believe, that there fhould have been men who maintained, that the univerfe was the
effect
effect of mere chance, without any defign. But there always have been, and there ftill are, perfons of this defcription; thofe, however, who have a folid knowledge of nature, and whom fear of the juftice of God does not prevent from acknowledging Him, are convinced, with us, that there is a Supreme Being, who created the whole univerfe, and, from the remarks which I have juit been fuggefting to you, refpecting bodies, every thing has been created in the higheft perfection.

As to fpirits, the wickednefs of man feems to be an infringement of this perfection, as it is but too capable of introducing the greateft evils into the world, and thefe evils have, at all times, appeared incompatible with the fovereign gondnefs of God. This is the weapon ufually employed by infidels againft religion, and the exiftence of God. If God, fay they, was the author of the world, He muft alfo be the author of the evil which it contains, and of the crimes committed in it.

This queftion, refpecting the origin of evil ; the dificulty of explaining, How it can confift with the fovereign goodnefs of God, has always greatly perplexed philofophers and divines. Some have endeavoured to give a folution, but it has fatisfied only themfelves. Others have gone fo far as to maintain, that God was, in fact, the author of moral evil, and of crimes ; always protefting, at the fame time, that this opinion ought to bring no imputation on the goodncis and holinefs of God, Others, finally, confider
fider this queftion as a myfiery which we cannot comprehend; and thefe laft, undoubtedly, have embraced the preferable fentiment.

God is fupremely good and holy ; He is the author of the world, and that world fwarms with crimes and calamities. Thefe are three truths which it is, apparently, dificult to reconcile : but, in my opinion, a great part of the difficulty vanifies, as foon as we have formed a juit idea of fpirit, and of the liberty fo effential to it, that God himfelf cannot diveft it of this quality.

God having created firits, and the fouls of men, I remark, firf, that firits are beings infinitely more excellent than bodies; and, fecondly, that, at the moment of creation, fpirits were all good: for time is requifite to the formation of evil inclinations: there is, therefore, no difficulty in affirming, that God created fpirits. But it being the effience of fpirits to be free, and liberty not being capable of fubfifting without a power to fin, to create a fpirit pofieffed of the power of finning, has nothing inconfiftent with divine perfection, becaufe a fpirit could not be created deftitute of that power.

God has, befides, done every thing to prevent crimes, by prefcribing to fpirits, precepts, the obfervance of which mutt always render them good and happy. There is no other method of treating fpirits, which cannot be fubject to any conftaint; and if fome of them have abued their liberty, and tranfrreffed thefe commandenents, they are refpon-
fible
fible for it, and worthy of punifhment, without any impeachment of the Deity.

There remains only one objection more to be confidered : namely, that it would have been better not to create fuch fpirits, as God forefaw they muit fink into criminality. But this far furpaffes human underfanding ; for we know not, whether the plan of the world could fulfift without them. We know, on the contrary, ty expcrience, that the wickednefs of fome men frcquently contributes to the correction and amendment of others, and thereby conducts them to happinefs. This confideration, alone, is fufficient to juftify the exiltence of evil fpirits. And, as God has all power over the confequences of human wickednefs, every one may reft affured, that in conforming to the commandments of God, all events which come to pafs, however calamitous țhey may appear to him, are always under the direction of Providence, and, finally, terminate in his true happinefs.

This providence of God, which extends to every individual, in particular, thus furnifhes the moft fatisfactory folution of the queftion refpecting the permifion, and the origin, of evil.*

30th December, 1760.

[^34]
LETTER XC.

Comnection of the preceding Confiderations with Religion.
Reply to the Objections of the philofopbic Sytems againgt Prayer.

BEFORE I proceed farther in my leffons on philofophy and phyfics, I think it my duty to point out to you their connection with religion.*

I begin with confidering an objection, which almof ail the philofophic fyftems have farted, againft prayer. Religion prefrribes this as our duty, with an affurance, that God will hear and anfwer our vows and prayers, provided they are conformable to the precepts which he has given us. Philofophy, on the other hand, inftructs us, that all events take place in frict conformity to the courfe of nature, eftab-

* I take the liberty, likewife, to reftore the following paffige, which M. de Condorcel, in his philofophic fqueamifhnefs, has thought unworthy of a place in his edition of the work.
"However extravagant and abfurd the fentiments of certain " philofophers may be, they are fo obfinately prepofferfed in fa" vour of them, that they reject every religious opinion and doc" trine, which is not conformable to their fyftem of philofophy. "From this fource are derived moft of the fects and herefies in re" ligion. Several philofophic fyftems are really contradistory to " religion; but in that cafe, divine truth oucht, furely to be pre" ferred to the reveries of men, if the pride of philofophers knew " what it was to yield. Should found philofopiny fometimes feem " in oppeltion to relicion, that opjoclition is more apparent than "real; and we muit not fuffer ourflives to be dazzled with the " fpecionflefs of objection."-E.E.
lifhed from the beginning, and that our prayers can effect no change whatever; unleis we pretend to expect, that God fhould be continually working miracles, in compliance with our prayers. This objection has the greater weight, that religion itfelf teaches the doctrine of God's having eftablifhed the courfe of all events, and that nothing can come to pafs, but what God forefaw from all eternity. Is it credible, fay the objectors, that God fhould think of altering this fettled courfe, in compliance with any prayers which men might addrefs' to him ?

But I remark, fint, that when God eftablifhed the courfe of the univerfe, and arranged all the events which muft come to pafs in it, he paid attention to all the circumftances which fhould accompany each event; and particularly to the difpofitions, to the defires, and prayers, of every intelligent being ; and that the arrangement of all events was difpofed, in perfect harmony, with all thefe circumftances. When, therefore, a man addreffes to God a prayer worthy of being heard, it muft not be imagined, that fuch a prayer came not to the knowledge of God till the moment it was formed. That prayer was already heard from all eternity; and if the Father of mercies deemed it worthy of being anfwered, He arranged the would exprefsly in favour of that prayer, fo that the accomplifiment fhould be a confequence of the natural courfe of events. It is thus that God anfwers the prayers of men, without working a miracle.

The eftabifinment of the courfe of the univerfe,
fixed once for all, far from rendering prayer unneceffary, rather increafes our confidence, by conveying to us this confolatory truth, That all our prayers have been already, from the beginning, prefented at the feet of the throne of the Almighty, and that they have been adinitted into the plan of the univerfe, as motives conformably to which events were to be regulated, in fubferviency to the infinite wifdom of the Creator.

Can any one believe, that our condition would be better, if God had no knowledge of our prayers before we prefented them, and that He fhould then be difpofed to change, in our favour, the order of the courfe of nature? This might well be irreconcileable to his wifdom, and inconfiftent with his adorable perfections. Would there not, then, be reafon to fay, that the world was a very imperfect work? that God was entirely difpofed to be favourable to the wifhes of men; but, not having forefeen them, was reduced to the neceflity of, every infant, interrupting the courfe of nature, unicfs he were determined totally to difregard the wants of intelligent beings, which, neverthelefs, confitute the principal part of the univerfe? For to what purpofe create this material world, replenifhed with fo many great wonders, if there were no intelligent beings, capable of admiring it , and of being elevated by it, to the adoration of God, and to the mof intimate union with their Creator, in which, undoubtedly, their higheft felicity confifs?

Hence, it muft, abfolutely, be concluded, that in-
telligent
telligent beings, and their falvation, muft have been the principal object, in fubordination to which, God regulated the arrangement of this world; and we have every reafon to reft affured, that all the events which take place in it, are in the mof delightful harmony with the wants of all intelligent beings, to conduct them to their true happinefs; but without conftraint, becaufe of their liberty, which is as effential to fpirits, as extenfion is to body. There is, therefore, no ground for furprize, that there fhould be intelligent beings, which fhall never reach felicity.

In this connection, of fpirits with events, confifts the divine Providence, of which every individual has the confolation of being a partaker ; fo that every man may reft affured, that, from all eternity, he entered into the plan of the univerfe. How ought this confideration to increafe our confidence, and our joy in the providence of God, on which all religion is founded! You fee then, that on this fide religion and philofophy are by no means at variance.

> 3d Fanuary, 1761.

L E T T R XCI.

The Liberty of intelligent Beings in Harmony weith the Docirines of the Chriftian Religion.

LIBERTY is a quality fo effential to every fpiritual being, that Cod himiclf cannot diveft them of it, juft as He cannot diveft a body of it's extenfion,
tenfion, or of it's incrtia, without entirely deftroying, or annihilating it : to diveft a fpirit of liberty, therefore, would be the fame thing as to annihilate it. This muft be underftood of the fpirit, or foul itfelf, and not of the actions of the body, which the foul directs, in conformity to it's will. If you would prevent me from writing, you have but to bind my hands; to write is, undoubtedly, an exercife of liberty; but then, though you may fay, that you have deprived me of the liberty of writing, you have only deprived my body of the faculty of obeying the dictates of my foul. Bind me ever fo hard, you cannot extinguifh in my firit an inclination to write; all you can do is to prevent the execution of it.
We muft always carefully difinguifh between inclination, or the act of willing, and execution, which is performed by the miniftration of the body. The act of willing cannot be reftrained by any exterior power, not even by that of God, for liberty is independent of all exterior force. But there are means of acting on fpirits, by motives which have a tendency, not to conftrain, but to perfuade. Let a man be firmly determined to engage in any enterprize, and let us fuppofe the execution of it prevented; without making any change in his intention, or will, it might be poffible to fuggeft motives, which fhould engage him to abandon his purpofe, without employing any manner of conftraint: however powerful thefe motives may be, he is always mafter of his own will; it never can be faid, that he was forced, or conftrained, to it, at leaft the expreffion
would be improper; for the proper term is perfuade, which is fo fuitable to the nature, and the liberty, of intelligent beings, that it cannot be applied to any other. It would be very ridiculous, for example, in playing at billiards, to fay, that I perfuaded the ball to run into the hazard.

This fentiment, refpecting the liberty of fpirits, appears, however, to fome perfons, contrary to the goodnefs, or the power, of the Supreme Being. Liberty, from it's very nature, can fubmit to no degree of conftraint, even on the part of God. But without exercifing any conftraint over fpirits, God has an infinite variety of means of prefenting them with perfuafive motives ; and, I believe, that all poffible cafes are adapted by Providence to our condition, in fuch a manner, that the moft abandoned wretches might derive from them the moft powerful motives to converfion, if they would but liften to them : and that a miracle would not produce a better effect on thefe vicious fpirits ; they might be affected by it, for a feafon, but would not become better. It is thus that God co-operates in our converfion, by furnifhing us with motives the moft efficacious, and by the circumftances and opportunities which his providence fupplies.

If, for example, a man, who hears an awakening fermon, is affected by it, repents, and is converted; the act of his foul is evidently his own work; but the occafion of the fermon, which he was fo happy as to hear, precifely at the time, when he was difpofed to profit by it, was nothing lefs than his work; the divine
divine Providence over-ruled that circumftance, fo falutary to him. In fact, without the opportunity, over which the-man had no power, he would have perfinted in a finful courfe.

Hence, you will eafily comprehend the meaning of fuch expreflions as thefe: "Man can do nothing of " himfelf; all depends on divine grace; it is God " that worketh to will and to do." The favourable circumftances which Providence fupplies to men, are fufficient to elucidate thefe expreffions, without having recourfe to a fecret force, which acts by conftraint on human liberty ; as thefe circumftances are directed of God, in conformity to the moft confummate wifdom, in the view of conducting every intelligent being to happinefs and falvation, unlefs he wilfully rejects the means by which he might have attained true felicity.

$$
\text { 6:b fanuary, } 1 ; 6 \mathrm{r} \text {. }
$$

LETTER XCII.

Elucidation refpecting the Nature of Spirits.

IN order more clearly to elucidate what I have juft faid refpecting the difference between body and fpirit ; for it is impoffible to be too attentive to what conflitutes that difference, as it extends fo far, that fpirit has nothing in common with body, nor body with fpirit, I think it neceffary to fubjein the following reflections.

Extenfion,

Extenfion, inertia and impenetrability, are the pro* perties of body ; Spirit is without extenfion, without inertia, without impenetrability. All philofophers are agreed, that extenfion cannot have place in re* fpect of fpirit. It is a felf-evident truth, for every thing extended is divifible, and you can form the idea of it's parts ; but a fpirit is fufceptible of no divifion; you can have no conception of it's half, or of it's third part. Every fpirit is a complete being, to the exclufion of all parts; it cannot, then, be affirmed, that a fpirit has length, breadth, or thicknefs. In a word, all that we conceive of extenfion, muft be excluded from the idea of a fpirit.

It would appear, therefore, that as fpirits have no magnitude, they muft refemble geometrical points, the definition of which is, that they have neither length, breadth, nor depth. Would it be a very accurate idea to reprefent to ourfelves a fpirit by a mathematical point? The fcholaftic philofophers have profeffed this opinion, and confidered firits as beings infinitely fmall, fimilar to the moft fubtile particles of duft, but endowed with an inconceivable activity and agility, by which they are enabled to tranfport themfelves, in an initant, to the greateft diftances. They maintained, that in virtue of this extreme minutenefs, millions of fpirits might be inclofed in the fmalleft face ; they even made it a queftion, How many fpirits could dance on the point of a needle?

The difciples of Wolff are nearly of the fame opinion. According to them, all bodies are compofed of particles extremely minute, divefted of all magni-
tude, and they give them the name of monads. A monad, then, is a fubftance deftitute of all extenfion, and on dividing a body, till you come to particles fo minute, as to be fufceptible of no farther divifion, you have got to the Wolfian monad, which differs, therefore, from the moft fubtile particle of duft, only in this, that the minuteft particles of duft are not, perhaps, fufficiently finall, and that a farther divifion is ftill neceffary to obtain real monads.

Now, according to Mr. Wolf, not only all bodies are compofed of monads, but every fpirit is merely a monad; and the Supremc Being, I tremble as I write it, is, likewife, a monad. This does not convey a very magnificent idca of God, of fpirits, and of the fouls of men. I cannot conceive, that my foul is nothing more than a being, fimilar to the laft particles of a body, or that it is reduced almoft to a point. It appears to me ftill lefs capable of being maintained, that feveral fouls joined together, might form a body, a flip of paper, for example, to light a pipe of tobacco. But the fupporters of this opinion, go upon this ground, that as a fpirit has no magnitude, it muft, of neceffity, refemble a gcometrical point. Let us examine the folidity of their reafoning.

I remark, firft, that as a fpirit is a being of a nature totally different from that of body, it is abfurd to apply to it fandards, which fuppofe magnitude, and that, confequently, it would be folly to afk, how many feet, or inches, long, a fpirit is, or how many pounds, or ounces, it weighs? Thefe queftions are applicable only to things which have length, or

Vol. I.
weight: and are as abfurd as if, fpeaking of time, it were to be afked, how many feet long an hour was, or how many pounds it weighed? I can always, confidently, affirm, that an hour is not equal to a line of 100 feet, or of ten feet, or of one foot, or any other ftandard of meafure ; but it by no means follows, that an hour muft be a geometrical point. An hour is of a nature entirely different, and it is impoffible to apply to it any ftandard, which fuppofes a length, which may be expreffed by feet, or inches.

The fame thing holds good as to fpirit. I can always boldly affirm, that a fpirit is not ten feet, nor 100 feet, nor any other number of feet; but it does not hence follow, that a fpirit is a point, any more than that an hour muft be one, becaufe it cannot be meafured by feet or inches. A fpirit, then, is not a monad, or in any refpect fimilar to the ultimate particles into which bodies may be divided; and you are perfectly able to comprehend, that a fpirit may have no extenfion, without being, on that account, a point, or a monad. We muft, therefore, feparate every idea of extenfion from that of firit.

To afk, In what place does a fpirit refide? would be, for the fame reafon, likewife, an abfurd queftion; for to connect fpirit with place, is to afcribe extenfion to it. No more can I fay, in what place an bourt is ; though affuredly an hour is fomething; fomething, therefore, may exift, without being attached to a certain place. I can, in like manner, affirm, that my foul does not refide in my head, nor out of my head, nor in any particular place ; without it's
being deduced, as a confequence, that my foul has, therefore, no exiftence ; juft as it may be with truth affirmed of the hour now paffing, that it exifts neiin my head, nor out of my head. A fpirit exifts, then, though not in a certain place; but if our reflection turns on the power which a fpirit has, of acting upon a body, the action is, moft undoubtedly, performed in a certain place.

My foul, then, does not exift in a particular place, but, it acts there, and as God poffeffes the power of acting upon all bodies, it is, in this refpect, we fay, He is every where, though his exiftence is attached to no place.
iotb Fanuay, 176 r .

LETTER XCIII.

The Subject continued. Reflections on the State of Souls after Death.

YOU will, probably, be furprized at the fentiment which I have juft now ventured to advance, that fpirits, in virtue of their nature, are in no place. In thus affirming, I fhall, perhaps, be in danger of paffing for a man who denies the exiftence of fpirits, and, confequently, that of God. But I have already demonftrated, that fomething may exift, and have a reality, without being attached to any one place. The example drawn from an hour, though feeble, removes the greateft difficulties, though
there is an infinite difference between an hour and a fpirit.

The idea which I form of firits, appears to me incomparably more noble than that of thofe who confider them as geometrical points, and who reduce God himfelf to this clafs. What can be more fhocking than to confound all fpirits, and the Supreme Being among the reft, with the minuteft particles into which a body is divifible, and to rank them in the fame clafs with thefe particles, which it is not in the power of the learned term monad to ennoble?

To be in a certain place, is an attribute belonging only to corporeal things, and, as fpirits are of a totally different nature, it is not a matter of furprize to fay, that they are not to be found in any place, and I am under no apprehenfion of reproach, for the elucidations which I have fubmitted to you on this fubject. It is thus I exalt the nature of firits infinitely above that of bodies.

Every fpirit is a being that thinks, reflects, reafons, deliberates, acts freely, and, in one word, that lives: whereas body has no other qualities but that of being extended, fufceptible of motion, and impenetrable; from whence refults this univerfal quality, that every body remains in the fame fate, as long as there is no neceflity of mutual penetration, or of their undergoing fome change ; and in cafe of the neceffity of their penetrating each other, if they continued to remain in their fate, their impenetrability itfelf fupplies the powers requifite to change their
ftate, as far as it is neceffary to prevent all penetration.

In this confift all the changes which take place in bodies : all is paffive, and neceffarily befalls them in conformity to the laws of motion. There is, in body, neither intelligence, nor will, nor liberty : thefe are the fupereminent qualities of fpirits, while bodies are not even fufceptible of them.

It is fpirit, likewife, which produces, in the corporeal world, the principal events, the illuftrious actions, of intelligent beings, which are all the effect of the influence which the fouls of men exercife upon their bodies. This power, which every foul has over it's body, cannot but be confidered as a gift of God, who has eftablifhed this wonderful union between foul and body. And as I find my foul in fuch an union with a certain particle of my body, concealed in the brain, it may be faid, that the feat of my foul is in that fpot, though, properly fpeaking, my foul refides no where, and is referable to that place of my body, only in virtue of it's action, and of it's power.

It is alfo the influence of the foul upon the body which conftitutes it's life, which continues as long as this unifon fubfifts, or as the organization of the body remains entire. Death, then, is nothing elfe but the diffolution of this union, and the foul has no need to be tranfported elfewhere; for, as it refides in no place, all places muft be indifferent to it; and, confequently, if it fhould pleafe God, after my death, to eftablifh a new union between my foul, and,
an organized body in the moon, I fhould inftantly be in the moon, without the trouble of a long journey. And if, even now, God were to grant to my foul, a power over an organized body in the moon, I fhould be equally here, and in the moon; and this involves no manner of contradiction. It is body only which cannot be in two places at once; but there is nothing to prevent fpirit, which has no re= lation to place, in virtue of it's nature, to act at the fame time, on feveral bodies, fituated in places very remote from each other; and, in this refpect, it might be faid, with truth, that it was in all thefe places at once:

This fupplies us with a clear elucidation of the omniprefence of God: it is, that his power extends to the whole univerfe, and to all the bodies which it contains. It appears to me, of confequence, an improper expreffion, to fay, that God exifts every where, as the exiftence of a fpirit has no relation to place. It is more confonant with propriety to fay, God is every where prefent.

Let us now compare this idea with that of the Wolfians, who, reprefenting Deity under the idea of a point, attach him to one fixed place, as, in fact, a point cannot be in feveral places at once; and how is it poffible to reconcile the divine omnipotence, with the idea of a point?

Death being a diffolution of the union fubfifting between the foul and body during life, we are enabled to form fome idea of the ftate of the foul after death. As the foul, during life, derives all it's know.
ledge through the medium of the fenfes, being deprived, by death, of the information communicated through the fenfes, it no longer knows what is paffing in the material world; this fate might, in fome refpects, be compared to that of a man who fhould, all at once, become blind, deaf, dumb, and deprived of the ufe of all the other fenfes. Such a man would retain the knowledge which he had acquired, through the medium of fenfe, and might continue to reflect on ideas previoufly formed; his own actions, efpecially, might fupply an ample ftore, and, finally, the faculty of reafoning might remain entire, as the body, in no refpect whatever contributes to it's exercife.

Sleep, likewife, furnifhes us with fomething like an example of this fate, as the union between foul and body is then, in a great meafure, interrupted; though the foul, even in fleep, ceafes not from exerting it's activity, being employed in the production of what we call dreams. Thefe dreams are ufually very much difturbed, by the remains of the influence which the fenfes fill exercife over the foul; and we know, by experience, that the more this influence is fufpended, which is the cafe in very profound fleep, the more regular and connected, likewife, our dreams are. Thus, after death, we fhall find ourfelves in a more perfect ftate of dreaming, which nothing fhall be able to difcompofe : it fhall confift of reprefentations, and reafonings, perfectly well kept up. And this, in my opinion, is nearly all we can fay of it, at leaft, with any appearance of reafon.

LETTER XCIV.

Confiderations on the Antion of the Soul upon the Body, and of the Body upon the Soul.

AsS the foul is the principal part of our being, it is of high importance, thoroughly to inveftigate it's operations. You will pleafe to recollect, that the union between the foul and the body, contains a two-fold influence: by the one, the foul perceives and feels all that paffes in a certain part of the brain; and by the other, it has the power of acting. on that fame portion of the brain, and of producing certain motions in it.

Anatomifts have taken infinite pains to difcover this part of the brain, which is juftly called the feat of the foul; not that the foul actually refides there, for it is not confined to any place, but becaufe the power of acting is attached to that fpot. It may be faid, that the foul is prefent there, but not that it exifts there, or that it's exiftence is limited to it.: This part of the brain is, undoubtedly, that in which all the nerves terminate; now, anatomifts tell us, that this termination is in a certain portion of the brain, which they term the callous body. This, therefore, we may confider as the feat of the foul, and the Creator has beftowed, upon every foul, fuch a power over this callous membrane * of his body, that it not

[^35]only perceives all that paffes there, but is, likewife, alile to produce a reciprocal impreffion. Here, then, we obferve a two-fold action : the one, by which the body acts upon the foul, and the other, by which the foul acts upon the body, but thefc actions are infinitely different from thofe which bodies exercife upon other bodies.

The foul, from it's union with the corpus callofum, finds itfelf intimately connected with the whole body, by means of the nerves, which are thence univerfally diffufed. Now, the nerves are fibres fo wonderfully conftructed, and, to all appearance, filled with a fluid fo fubtile, that the flighteft change which they undergo, at one extremity, is inftantly communicated to the other extremity in the brain, where the feat of the foul is. And, reciprocally, the flighteft impreffion made by the foul, on the extremities of the nerves, in the corpus callofum, is immediately tranfmitted through the whole extent of every nerve; and it is thus, that the mufcles and members of our bodies are put in motion, and obey the commands of the foul.

This wonderful ftructure of the body, places it in a very clofe connection with all exterior objects, whether near or remote, which may act upon it, either by immediate contact, as in feeling and tafting; or by their exhalations, as in fmelling. Bodies, at a
opinion: but their labours may, perhaps, one day inform us, what we are to underftand by the origin of the nerves, and even, to a certain point, in what manner they tranfmit to the brain the inpreffions which they receive. $-F . E$.
great
great diffance, act on the fenfe of hearing, when they make a noife, and exert in the air vibrations which ftrike our ears; they act, likewife, upon the fight, when they are illumined, and tranfinit into our eyes the rays of light, which confift, in like manner, in a certain vibration, caufed in that medium, much more fubtile than the air, which we call Ether. It is thus that bodies, both near and remote, may act upon the nerves of our body, and produce certain impreffions in the corpus callofum, from which the foul derives it's perceptions.

From every thing, therefore, which makes an impreffion on our nerves, there refults a certain change in the brain, of which the foul has a perception, and, thereby, acquires the idea of the object which caufed it. We have here, then, two things to be examined : the one is corporeal, or material, which is the impreffion, or the change produced in the corpus callofum of the brain; the other fpiritual, namely, the perception, or the information, which the foul derives from it. It is, if I may fo exprefs myfelf, from the contemplation of what paffes in the corpus callofum, that all our knowledge is derived.

You muft permit me to enter into a more particular detail, on this important article. Let us, firft, confider one fingle fenfe, fay, that of fmelling, which being the leaft complicated, feems the moft proper to affift us in our refearches. Suppofe all the other fenfes annihilated, and that a rofe was applied to the nofe ; it's exhalations would, at once, excite a'certain agitation in the nerves of the nofe, which, thence
thence tranfinitted to the corpus callofum, will occafion there, likewife, fome change, and in this confifts the material circumftance, which is the fubject of our inveftigation. This flight change, produced in the corpus callofum, is then perceived by the foul, and it thence acquires the idea of the fmell of a rofe : and this is the fpiritual operation which takes place; but we cannot explain in what manner this is done, as it depends on the incomprehenfible union which the Creator has eftablifhed between the body and the foul.

It is certain, however, that upon this change, in the corpus callofum, there is excited in the foul the idea of the finell of a rofe, or the contemplation of this change furnifhes to the foul a certain idea, that of the fmeli of a rofe, but nothing more: for, as the other fenfes are fufpended, the foul can form no judgment of the nature of the object itfelf, which fuggefted this idea; the idea of the fmell of a rofe alone, was excited in the foul. Hence, we comprehend, that the foul does not form this idea of itfelf, for it would have remained unknown, but for the prefence of a rofe. But farther, the foul is not indifferent with refpect to it; the perception of this idea is agreeable; the foul itfelf is, fome how, interefted in it. Accordingly, we fay, that the foul feels the odour of the rofe, and this perception we call fenfation.

It is the fame with ali the other fenfes; every object, by which they are ftruck, excites in the corpus callofun a certain change, which the foul obferves with a fenfation, agreeable or difagreeable, and from
which it derives the idea of the object which caufed it. This idea is accompanied with a fenfation, fo much the ftronger, and more intenfe, as the impreffion made on the corpus callofum is more lively. It is thus, that the foul, by contemplating the changes produced in the corpus callofun of the brain, acquires ideas, and is affected by them; and this is what we underitand by the term fenfation.

17th Fan. 176 r .

LETTER XCV.

$$
\text { Of the Faculties of the Soul, and of } \mathcal{F} \text { udgment. }
$$

HAD we no other fenfe but that of fmelling, our knowledge would be very limited; we fhould, then, have no other fenfation than that of odours, the diverfity of which, were it ever fo great, could not very much intereft our foul ; being reftricted to this, that agreeable fmells would procure fome degree of pleafure, and fuch as are difagreeable, would excite fome difgurt.

But this very circumftance carries us forward to a moft important inquiry : Whence is it, that one fmell is agreeable, and another difgufting? It cannot be a matter of doubt, that agreeable fmells excite, in the sorpus callofum, a different agitation from that which is produced by the difagreeable ; but how comes it, that one agitation, in the corpus callofum, can give pleafure to the foul, while another is officnfive, and
even, frequentiy. becomes infupportable? The caufe of this difference refides no longer in body, and matter; we muft look for it, in the nature of the foul itfelf, which enjoys a certain pleafure in feeling certain agitations, while others excite uneafinefs : and the real caufe of this effect we do not know.

Hence we comprehend, that the foul does more than fimply perceive what paffes in the brain, or corpus call-fum ; it fubjoins to fenfation, a judgment refpecting what it finds agreeable, or difrufting, and, confequently, exercifes, befide the faculty of perceiving, another, and a different faculty, that of judging: and this judgment is wholly different from the fimple idea of a fmell.

The fame confideration, of the fenfe of fmelling only, difcovers to us ftill other acts of the foul. When the fmells are changed, when you apply to the nofe a carnation after a rofe, the foul has not only a perception of both finells, but, likewife, remarks a difference between them. Hence we conclude, that the foul fill retains the preceding idea, to compare it with that which follows; in this confifts reminifcence, or memory, by which we have the power of recalling ideas, antecedent and paft. Now, the real fource of memory is entirely concealed from us. We know well, that the body has much to do in it ; for experience affures us, that difeafe, and various accidents, which befall the body, weaken, and frequently deftroy, the memory : it is equally certain, at the fame. time, that the recollection of ideas is the proper work of the foul. A recollected idea is effentially
differcht from an idea excited by an object. I have a perfect recollection of the fun, which I faw to day, but this idea greatly differs from that which I had while I was looking at the fun.
Some authors pretend, that when we recall an idea, there happens in the brain an agitation fimilar to that which firft produced it; but if this were the cafe, I fhould actually fee the fun; it would no longer be a recollected idea. They admit, indeed, that the agitation which accompanies the recalled idea, is much weaker than that from which the original idea proceeded; but fill I am not fatisfied with this, for it would thence follow, that when I recal the idea of the fun, it would be much the fame as when Ifee the moon, the light of which, you will pleafe to remember, is about 200,000 times weaker than that of the fun. But actually to look at the moon, and fimply to recollect the fun, are two things abfolutely different.

We may fay with truth, that the recollected ideas are the fame with the actual ideas; but this identity refpects only the foul; with regard to the body, the actual idea is accompanied with a certain agitation in the brain, whereas the recollccted one is deflitute of it. Accordingly, we fay, that the idea which I feel, or which an object acting on my fenfes excites in my foul, is a fenfation; but it can with no propriety be faid, that a recollected idea is a fenfation. To recollect, and to feel, always remain two things, abfolutely different.

When, therefore, the foul compares two different finells,
fimells, when it has the idea of the one from the prefence of an object acting on the fenfe of fmelling, and that of the other from recollection, it has, in fact, two ideas at once, the actual idea, and the recollected idea : and in pronouncing, whether of the two is more or lefs agreeable, or difagreeable, it exerts a particular faculty, diftinct from that by which it only contemplates what is prefented to it.

But the foul performs fill other operations; when a fucceffion of feveral different finells is prefented to it; for while it is fruck with each of thefe, in it's turn, the preceding are recollected, and a notion is thereby acquired of paft and prefent, and even of future, when new fenfations are propofed, fimilar to thofe of which it has already had experience. It thence, likewife, derives the idea of fucceffion, in as much as it undergoes feveral impreflions fucceffively, and hence refults the idea of duration, and of time. Finally, on remarking the diverfity of fenfations, which fucceed each other; it begins to reckon one, troo, three, \&ic. though this flould not go farther, from want of figns, or names, wherewith to mark numbers. For, fuppofing a man has juft begun to exift, and who has hitherto experienced no fenfations, but thofe of which I have been fpeaking; far from having created a language for himfelf, he only knows how to exert his firft faculties, on the fimple ideas which the fenfe of fimelling prefents to him.

You fee, then, that the man in queftion, has already acquired the capacity of forming to himfelf ideas of diverfity, of the prefent, of the paft, and
even of the future; afterwards, of fucceffion, of the duration of time, and of number, or at leaft of the elements of thefe ideas. Some authors pretend, that fuch a man could not acquire the idea of the duration of time, without a fucceflion of different fenfations; but it appears to me, that the fame fenfation, the fmell of the rofe, for example, being continued for a confiderable time together, he would be differently affected by it, than he would, if it were prefently withdrawn. A very long duration, of the fame fenfation, would, at length, become tirefome, which would, neceflarily, excite in him the idea of duration. It muft certainly be allowed, that his foul would be fenfible of a very different effect, if the fenfation were continued long, than if it lafted only for a moment: and the foul will clearly perceive this difference; it will, accordingly, have fome idea of duration, and of time, without any variation of the fenfations.

Thefe reflections which the foul makes, occafioned by it's fenfations, are what properly belong to it's jpirituality, the body furnifhing only fimple fenfations. The perception of thefe fenfations is, already, an act of the foul's fpirituality; for a body can never acquire ideas.
20th ${ }^{7}$ anurury, 176 .

LETTER XCVI.

Conviction of the Exiftence of what rue perceive by the Senfes. Of the Idealifts, Egotits, and Materialijts.

IN all the fenfations which we experience, when one of our fenfes is ftruck by any object, it is a matter of high importance to remark, that the foul not only acquires an idea, conformed to the impreffion made on the nerves, but that it judges, at the fame time, there muft exift an exterior object, which furnifhed this idea. Though habit makes us confider this judgment as extremely natural, yet we have reafon to be aftonifhed at it, when we examine, more attentively, what then paffes in our brain.

An example will place this in a clear light. I fhall fuppofe you looking at the full moon, by night ; the $\dot{\text { rays which enter into your eyes will, at once, paint }}$ on the retina, an image fimilar to the moon, for the minute particles of the retina are, by the rajs, put into a vibration fimilar to that which agitates thofe of the moon. Now, the retina, being only a contexture of nerves, extremely fubtile, you eafily comprehend, that thefe nerves muft hence undergo a certain agitation, which will be tranfinitted to the origin of the nerves in the brain. There will be excited, therefore, likewife, in that portion of the brain, a certain agitation, which is the real object that the foul contemplates, and from which it derives an article of knowledge, which is the idea of the moon.

YoL. I.
130
Cойе-

Confequently, the idea of the moon is nothing elfe, but the contemplation of this flight agitation, affecting the origin of the nerves.

The activity of the foul is fo much attached to the fpot in which the nerves terminate, that it abfolutely knows nothing of the images painted on the bottom of the eye, and ftill lefs of the moon, whofe rays have formed thefe images. .The foul, however, does not fatisfy itfelf with the mere fpeculation of the agitation in the brain, which fupplies it immediately with the idea of the moon, it fubjoins to this, the judgment, that there really exifts, out of us, an object, which we call the moon. This judgment is reduced to the following reafoning.

There has taken place in my brain a certain agitation, a certain impreffion; I do not abfolutely know by what caufe it has been produced, as I know nothing even of the images, which are the immediate caufe of it upon the retina; neverthelefs, I boldly pronounce, that there is a body out of me, the moon, which fupplied me with this fenfation.

What a confequence? May it not be more probable, that this agitation, or this impreffion, is produced, in my brain, by fome internal caufe, fuch as the motion of the blood, or, perhaps, merely by chance? What right have I, then, to conclude, that the moon actually exifts? If I conclude from it, that there is, at the bottom of my eye, a certain image, this might pafs; as, in fact, this image is the immediate caufe of the impreffion made on my brain; though it was fufficiently bold to hazard even this
conclufion. But I go much farther, and, becaufe there is a certain agitation in my brain, I proceed to conclude, that there exifts, out of my body, nay, in the heavens, a body which is the firft caufe of fuch impreffion, and that this body is the moon.

In fleep, when we imagine we fee the moon, the foul acquires the fame idea: and, perhaps, a fimilar agitation is then produced in the brain, as the foul imagines that it then really fees the moon. It is, undoubtedly, certain, that, in this, we deceive ourfelves: but what affurance have we, that our judgment is better founded when we are awake? Philofophers have loft their way, more than once, in endeavouring to folve this difficulty.

What I have juft faid, refpecting the moon, takes place with regard to all the bodies which we fee. The confequence is not apparent, that there muft exift bodies out of us, becaufe our brain undergoes certain agitations, or impreffions. This applies even to our own limbs, and to our whole body, of which we know nothing but by means of the fenfes, and of the impreffions which they make in the brain : if, then, thefe impreffions, and the ideas which the foul derives from them, prove nothing as to the exiftence of body, that of our own body becomes equaily doubtful.

You will not, therefore, be furprized, that there flould be philofophers, who have openly denied the exiftence of bodies; and, in truth, it is not eafy to refute them. They derive a very frong argument from dreams, in which we imagine, that we fee fo
many bodies, which have no exiftence. It is faid, with truth, that then it is pure illufion; but what affurance have we, that we are not under the power of a fimilar illufion when awake? According to thefe philofophers, it is not an illufion : the foul, they admit, perceives a certain impreffion, an idea, but they boldly deny it to be a confequence, that bodies really exift, which correfpond to thofe ideas. The fupporters of this fyftem are called Idealifts, becaufe they admit the ideas only of material things, and abfolutely deny their exiftence. They may, likewife, be denominated Spiritualifs, as they maintain, that no beings exift, except fpirits.

And as we do not know other fpirits, but by means of the fenfes, or of ideas, there are philofophers who go fo far as to deny the exiftence of all ipirits, their own foul excepted, of the exiftence of which every one is completely convinced. Thefe are called Egotifts, becaufe they pretend that nothing exifts but their own foul.

To them are oppofed the philofophers, whom we denominate Materialifts, who deny the exiftence of fpirits, and maintain, that every thing which exifts is matter, and that what we call our foul is only matter, extremely fubtile, and thereby rendered capable of thought.
24ith Fannary, 176 t.

LETFER XCVII.

Refutation of the Idealifts.

IWISH it were in my power to furnifh you with the arms neceffary to combat the Idealifts and the Egotifts, by demonftrating, that there is a real connection between our fenfations and the objects themfelves, which they reprefent; but the more I think of it, the more I feel my own incapacity.

It would be ridiculous to think of engaging with the Egotifts : for a man who imagines he alone exifts, and who does not believe in my exiftence, would act in contradiction to his own fyftem, if he paid any attention to my reafoning, which, according to him, would be that of an imaginary being. It is, likewife, a hard tafk to confute the Idealifts, nay, it is impoffible to convince, of the exiftence of bodies, a man obftinately determined to deny it. Though no fuch philofophers exifted, it would be highly interefting to be able to convince ourfelves, that as often as our foul experiences fenfations, it may be with certainty concluded, that bodies likewife exift ; and that, when my foul is affected by the fenfation of the moon, I may thence boidly infer the exiftence of the moon.

But the union which the Creator has eftablifhed between the foul and the brain, is a myftery fo unfathomable, that all our knowledge of it amounts
only to this: Certain impreffions made in the brain, where the feat of the foul is, excite in it certain ideas, or fenfations ; but the bow, of this influence, is abfolutely unknown to us. We ought to fatisfy ourfelves with knowing, that this influence fubfifts, which experience fufficiently confirms; and it is in vain to inveftigate bow this is produced. Now, the fame experience which proves it, informs us, likewife, that every fenfation always difpofes the foul to. believe that there exifts, out of it, fome object which excited fuch fenfation; and that fenfation difcovers to us feveral properties of the object.

It is, then, a moft undoubted fact, that the foul always concludes, from any fenfation whatever, the exiftence of a real object, out of us. This is fo natural to us, from our earlieft infancy, and fo univerfally the cafe with all men, and even with animals, that it cannot, with any propriety, be called a prejudice. The dog that barks when he fees me, is certainly convinced that I exift; for my prefence excites in him the idea of my perfon. The dog, then, is not an idealift. Even the meane't infects are affured that bodies exift, out of them, and they could not have this conviction, but by the fenfations excited in their fouls.

I believe, therefore, that fenfations include much more than thofe philofophers are difpofed to admit. They are not only fimple perceptions of certain impreffions made in the brain; they fupply the foul not with ideas only, but they effectively reprefent
to it objects externally exifting, though we cannot comprehend how this is done.

In fact, what refemblance can there be between the luminous idea of the moon, and the flight impreffion which it's rays may produce in the brain, by means of nerves?

The idea, even in as far as the foul perceives it, has nothing material; it is an act of the foul, which is a fpirit: it is not neceffary, therefore, to look for a real relation between the impreflions of the brain, and the ideas of the foul; it is enough for us to know, that certain impreffions made in the brain, excite certain ideas in the foul, and that thefe ideas are reprefentations of objects externally exifting, of whofe exiftence they give us the affurance.

Thus, when my brain excites in my foul the fenfation of a tree, or of a houfe, I pronounce, without hefitation, that a tree, or a houfe, really exifts, out of me, of which I know the place, the fize, and other properties. Accordingly, we find neither man nor beaft, who calls this truth in queftion. If a clown fhould take it into his head to conceive fuch a doubt ; and fhould fay, for example, he does not believe that his bailiff exifts, though he ftands in his prefence, he would be taken for a madman, and with good reafon; but when a pliilofopher advances fuch fentiments, he expects we fhould admire his knowledge and fagacity, which infinitely furpafs the apprehenfions of the vulgar.

It appears to me, accordingly, abundantly certain,

$$
\mathrm{Bb}_{4}
$$

that
that fuch extravagant fentiments would never have been maintained, but from pride, and an affectation of fingularity : and you will readily agree, that the common people have, in this refpect, much more good fenfe than thofe learned gentlemen, who derive no other advantage from their refearches, but that of bewildering themfelves in a labyrinth of chimeras, unintelligible to the reft of mankind.*

Let it be eftablifhed, then, as a certain rule, that every fenfation not only excites in the foul an idea, but fhews it, if I may fo exprefs myfelf, an external object, of whofe exifence it gives full affurance, without practifing a deception. A very formidable objection, however, is ftarted againft this, arifing from dreams, and the reveries of fick perfons, in which the foul experiences a great variety of fenfations of objects which no where exif. The only reflection I fhall fuggeft on this fubject is, that it muft be very natural for us to judge that the objects, the fenfations of which the foul experiences, really exift, as we judge after this manner even in fleep, though then we deceive ourfelves; but it does not thence follow, that we likewife deceive ourfelves when we are awake. In order to folve this objection, it is

[^36]neceffary to know better the difference of the fate of the man who is afleep, and of him who wakes; and none, perhaps, know this lefs than the learned, which muft furely be a matter of fome furprize to you.

LETTER XCVIII.

The Faculty of Perceiving. Reminifcence, Memory, and Attention. Simple and compound Ideas.

YOU are by this time fenfible, that objects, by acting upon our fenfes, excite in the foul fenfations, from which we judge that they really exif, out of us. Though the impreffions which occafion thefe fenfations are made in the brain, they prefent, then, to the foul, a fpecies of image fimilar to the object which the foul perceives, and which is called the fenfible idea, becaufe it is excited by the fenfes. Thus, on feeing a dog, the foul acquires the idea of it, and it is by means of the fenfes that the foul comes to the knowledge of external objects, and acquires fenfible ideas of them, which are the foundation of all our attainments in knowledge.

This faculty of the foul, by which it acquires the knowledge of external things, is denominated the faculty of perception, and depends, no doubt, on the wonderful union which the Creator has eftatlifhed between the foul and the brain. Now, the foul has
ftill another faculty, that of recalling ideas already communicated by the fenfes; and this faculty is named reminifcence, or imagination. Thus, having once feen an elephant, you will be able to recollect the idea of that animal, though it is no longer before you. There is, however, a mighty difference between actual and recollected ideas: the former make an impreffion much more lively and interefting than the latter, but the faculty of recalling ideas is the principal fource of all our knowledge.

Did we lofe the ideas of objects as foon as they ceafe to act upon our fenfes, we fhould never be able to make any reflection, any comparifon; and our knowledge would be entirely confined to the things which we fhould feel at the moment, all preceding ideas being extinguifhed, as if we had never poffeffed them.

It is, therefore, a faculty effential to reafonable beings, and with which animals too are endowed, that of being able to recollect paft ideas. You know the faculty of which I fpeak is memory. It by no means followṣ, however, that we have it always in our power to recall all our paft ideas. How fre: quently do we exert ourfelves in vain to recollect certain ideas which we formerly had? Sometimes we forget them entirely; but for the moft part only partially.

If you fhould happen, for example, to forget the demonftration of the Pythagorean theorem; with all your efforts, perhaps, you thould not be able to recollect it, but this would be only a partial forget-
fulnefs;
fulnefs; for as foon as I had again drawn the figure, and put you into the train of the demonftration, you will prefently recollect it, and this fecond demonftration will make on your mind quite a different impreffion from the firft. We fee, then, that the reminifcence of ideas is not always in our power, though they may not be wholly extinguifhed; and a flight circumftance is frequently capable of reproducing them.

We muft, therefore, carefully diftinguifh between fenfible and recollected ideas. Senfible ideas are reprefented to us by the fenfes; but we ourfelves form recollected ideas, on the model of the fenfible, as far as we remember them.

The doctrine of ideas is of the laft importance for the purpofe of a thorough difquifition of the real fources of human knowledge. And firf, ideas are diftinguifhed into fimple and complex. A fimple idea is that in which the foul finds nothing to diftinguifh, and remarks no parts different from each other. Such is, for example, the idea of a fmell, or of a fpot on a fubftance of one colour; fuch is, likewife, that of a ftar, in which we perceive only one luminous point. A complex idea is a reprefentation in whick the foul is able to diftinguifh feveral different things, When, for inftance, we look attentively at the moon, we difcover feveral dark fpots, furrounded by contours more luminous; we remark, alfo, her round figure, when the is full, and her horned figure, when waxing or waning. On viewing her through the telefcope,
telefcope, there are many other particulars diftinguifhable.

How many different things do we not perceive in beholding a noble palace, or a fine garden? When you do me the honour to read this letter, you will difcover in it the different traits of the characters, which you can with eafe difinguifh from each other. This, then, is a complex idea, as it contains a variety of fimple ideas. Not only this letter, taken in whole, prefents a complex idea, from it's confifting of a plurality of words; but every word, too, is a complex idea, being compofed of feveral characters; nay, every character is one, from the fingularity of the form which diftinguifhes it from others: but the elements or points which conftitute every character, may be confidered as fimple ideas, in as much as you no longer perceive in them any diverfity. A greater degree of attention will likewife difcover fome variety in thefe elements, on viewing them through a microfoope.

There is a great difference, therefore, even in the manner of contemplating objects. When we obferve them only flightly and tranfiently, we perceive very little variety; but, to an attentive confideration, every particular detail fands difclofed. A favage, on throwing his eyes over this letter, will take it for a piece of paper fcribbled all over, and will diftinguifh only the black from the white, whereas an attentive reader obferves in it the peculiar form of every character. Here, then, we have a new faculty of the
foul, denominated attention, by which it aequires the fimple ideas of the different things that meet in one object.

Attention requires addrefs, the refult of long and frequent exercife, to render it capable of diftinguifhing the different parts of an object. A clown and an architect, paffing by a palace, will both receive the impreffion of the rays which enter into their eyes; but the architect will difcover a thoufand minute particulars, of which the clown has no perception. Attention alone produces this difference.

31/2 fanuary, 176I.

L E T T E-R. XCIX.

Divifion of Ideas into clear and objcure, difinct and confufed. Of Diftraction.

IF we confider, in a flight manner only, a reprefentation made to us by the fenfes, the idea which we acquire from it is very imperfect, and we fay it is obfcure: but the more attention that we employ to diftinguifh all it's parts, the more perfect or diftinct our idea will become. In order to acquire a perféct or diftinct idea of an object, it is not then fufficient that it fhould be reprefented in the brain, by impref. fions made upon the fenfes, the foul, too, muf apply it's attention, which is properly an act of the foul, independent upon the body.

It is farther neceffary that the reprefentation in
the brain fhould be well expreffed, and contain the different parts and qualities which characterize the object. This takes place when the object is prefented to the fenfes in a fuitable manner. When, for example, I fee a piece of writing, at the diftance of ten feet, I am unable to read it, let me employ whatever degree of attention I may; the diftance of the characters prevents their being accurately expreffed on the bottom of the eye, and confequently alfo in the brain: but if the fame writing is brought to a proper diftance, I can read it, becaufe then ali the characters are diftinctly reprefented on the bottom of the eye.

You know that we employ certain inftruments in order to procure a more perfect reprefentation in the organs of fenfe; fuch as microfcopes and telefcopes; which are intended as fupplements to the imperfection of vifion. But, in employing their affiftance, we are incapable of attaining a diftinct idea, without attention ; otherwife we acquire but an obfcure idea, nearly fuch as we fhould have had by taking a glimpfe of the object only.

I have already remarked, that fenfations are by no means indifferent to the foul, but agreeable or difagreeable: and this agreeablenefs, or it's oppofite, excites our attention, unlefs the foul is pre-occupied by feveral other fenfations which entirely engrofs it: this laft ftate of the foul is termed diftraction.

Exercife, likewife, greatly contributes to frengthen attention : and there cannot be a mode of exercife more fuitable to children than teaching them to read; for they are thereby laid under the neceffity
of fixing their attention fucceffively on every charac ${ }^{2}$ ter, and of impreffing on their minds a clear idea of the figure of each. It is eafy to fee that this exercife muft be at firft extremely painful ; but fuch a habit is fpeedily acquired, that even a child, after a little application, can read with aftonifhing quicknefs. In read= ing a piece of writing, we muft have a very diftinct idea of every character; thus attention is fufceptible of a very high degree of perfection from exercife.

With what amazing rapidity will a proficient in mufic execute the moft difficult piece, though he never faw it before. It is certain that his attention muft have run over all the notes, one after another, and that he remarked the fignification of each. His attention, however, is not confined only to thefe notes; it prefides, likewife, over the motion of the fingers, not one of which moves but by an exprefs order of the foul; he remarks, likewife, at the fame time, how the other performers execute their parts. It is, upon the whole, altogether furprifing to what a height the addrefs of the human mind may be carried by application and exercife., Shew the fame piece of mufic to a beginner; how much time does it require to imprefs on his mind the fignification of every note, and to give him a complete idea of it: while the mafter acquires it by almont a fingle glance.

This ability extends equally to all other kinds of objects, in which one man may infinitely furpafs another. There are perfons who, with one glance fixed on a perfon paffing before them, acquire a diftinct idea, not only of all the features of the face,
but the particulars of his whole drefs, down to the minuteft trifles; while others are incapable of remarking the moft ftriking circumftances.

We obferve, in this refpect, an infinite difference among men: Some promptly catch all the different marks of an object, and form to themfelves a diftinct idea of it, while that formed by others is extremely obfcure. This difference depends, not only on mental penetration, but likewife on the nature of the ob: jects. A mufician catches at once the whole piece of mufic, and acquires a diftinct idea of it : but prefent him with a piece of writing in Chinefe characters, and he will have only very obfcure ideas indeed of fuch writing : the Chinefe, on the contrary, will know, at firft fight, the real import of each character, but will, in his turn, underftand nothing of mufical notes. The botanift obferves in a plant which he never faw before, a thoufand particulars which efcape the attention of another; and the architect difcerns, by a fingle glance, in a building, many things which another, with a much greater degree of attention, could not have difcovered:

It is always ufeful to form diftinct ideas of the objects prefented to our fenfes; in other words to remark all the parts of which they are compofed, and the marks which diftinguifh and characterize them: From thefe obforvations you will eafly comprehend the divifion of ideas into obfcure and clear, into confufed and difinct. The more diftinct they are, the more they contribute to the advancement of knowledge.

[^37]
LETTER C.

> Of the Abftraction of Notions. Notions general and individual. Of Genus and Species.

THE fenfes reprefent objects only which exift externally; and fenfible ideas all refer to them; but of thefe fenfible ideas the foul forms to itfelf a variety of other ideas, which are indeed derived from thefe, but which no longer reprefent objects really exifting.

When, for example, I look at the full moon, nd fix my attention only on it's contour, I form the idea of roundness; but I cannot affirm, that roundnefs exifts of itfelf. The moon is round, but the round figure does not exift feparately out of the moon. It is the fame with refpect to all other figures; and when I fee a triangular, or fquare table, I may have the idea of a triangle, or of a fquare, though fuch a figure exifts no where of itfelf, or feparately from an object poffeffing that figure.

The ideas of numbers have the fame origin. Having feen two or three perfons, the foul forms the idea of two or three, without attaching it any longer to the perfons. Having already acquired the idea of three, the foul is able to proceed, and to form the ideas of greater numbers, of four, five, ten, a hundred, a thoufand, and fo on, without ever having precifely feen fo many things together. A fingle inftance, therefore, in which we have feen two or three

Vol. I.
C. c
objects,
objects, may carry the foul forward to the formation of the ideas of other numbers, be they ever fo great.

The fame thing holds à to figures; and you have the power of forming to yourfelf the idea of a polygon, with 1761 fides, for example, though you never have feen an object of that form, and though no one fuch, perhaps, ever exifted.

Here the foul exerts a new faculty, which is called the power of abftraction; this takes place when the foul fixes it's attention on only one quantity or quality of the object, and confiders it feparately, as if it were no longer attached to the object. When, for inftance, I put my hand on a heated fone, and confine my attention to the heat only, I form from it the idea of heat, which is no longer attached to the ftone. This idea of heat is formed by abftraction, as it is feparated from the fone, and the foul might have derived the fame idea from touching a piece of wood heated, or by plunging the hand into hot water.

- Thus, by means of abftraction, the foul forms a thoufand other ideas of the quantities and properties of objects, by feparating them afterwards from the objects themfelves: as, when I fee a red coat, and fix my attention only on the colour, I form the idea of red, feparate from the coat, and it is obvious that a red flower, or any other fubftance of that colour, would have cnabled me to form the fame idea.

Thefe ideas, acquired by abftraction, are denominated notions, to diftinguifh them from fenfible ideas, which reprefent to us objects really exifting.

It is alleged that the power of abftraction is a prerogative of men, and of other rational beings, and that the beafts are entirely deftitute of it. A beaft may experience the fame fenfation of hot water that we do, but is unable to feparate the idea of heat and that of the water itfelf: it knows heat only in fo far as it is connected with the water, but has not the abftract idea of heat which we have. It is faid, that thefe notions are general ideas, which extend to feveral things at once, as we may find heat in ftone, wood, water, or any other body; but our idea of heat is not attached to any one body; for if my idea of heat were attached to a certain ftone, which firft fupplied me with that idea, I could not affirm that wood or other bodies were hot. Hence it is evident, that thefe notions, or general ideas, are not attached to certain objects, as fenfible ideas are; and as they diftinguifh man from the brute creation, they properly exalt him to a degree of rationality wholly unattainable by the beafts.

There is ftill farther a fpecies of notions, likewife, formed by abftraction, which fupply the foul with the moft important fubjects on which to employ it's powers: thefe are the ideas of genus and Jpecies. When I fee a pear-tree, a cherry-tree, an apple-tree, an oak, a fir, \&c. all thefe ideas are different; I, neverthelefs, remark in them feveral things which they have in common; as the trunk, the branches, and the roots; I fop fhort only at thofe things which the different ideas have in common, and the object,
in which all fuch qualities meet, I call a tree. Thus the idea of tree, which I have formed in this man. ner, is a general notion, and comprehends the fenfible ideas of the pear-tree, the apple-tree, and, in general, of every tree that exifts.

Now, the tree which correfponds to my idea of tree, no where exifts; it is not the pear-tree, for then the apple would not be comprehended under it ; for the fame reafon, it is not the cherry-tree, nor the plumb, nor the oak, \&c.; in a word, it exifts only in my foul ; it is only an idea, but which is realized in an infinite number of objects. In like manner, when I fpeak of a cherry-tree, it too is a general notion, which comprehends all the cherry-trees that exift : this notion is not reftricted to a particular cherry-tree in my garden: for then every other cherry-tree would be excluded.

With refpect to general notions, every exifting object, comprehended under one, is denominated an individual, and the general idea, fay that of the cherry-tree, is denominated fpecies or genus. Thefe two words fignify nearly the fame thing, but genus is the more comprehenfive, including in it a variety of fpecies. Thus the notion of a tree may be confidered as a genus, as it includes the notions of peartrees, apple-trees, oaks, firs, and fo on, which are fpecies ; and of fo many others, each of which contains a great number of exifting individuals.

This manner of forming general ideas is, therefore, likewife, performed by abftraction, and it is herc, chiefly,
chiefly, that the foul exerts the activity and performs the operations from which all our knowledge is derived. Without thefe general notions, we fhould differ nothing from the brutes.

7th February, 1761.

LETTER CI.

Of Language; it's Nature, Advantages, and Nccefity, in order to the Communication of Thought, and the Cultivation of Knowledge.

WHATEVER aptitude a man may have to exercife the power of abftraction, and to furnifh himfelf with general ideas, he can make no confiderable progrefs without the aid of language, fpoken or written. Both the one and the other contains a variety of words, which are only certain figns, correfponding to our ideas, and whofe fignification is fettled by cuftom, or the tacit confent of feveral men who live together.

It would appear, from this; that the only purpofe of language to mankind is mutually to communicate their fentiments, and that a folitary man might do very well without it ; but a little reflection only is neceffary to be convinced, that men ftand in need of language, as much to purfue and cultivate their own thoughts, as to keep up a communication with others.

To prove this, I remark, firf, that we have fcarcely C. 3 a word
a word in any language whofe fignification is attached to one individual object. If each cherry-tree in a whole country had it's proper name, as well as every pear-tree, and, in general, every individual tree; what an enormous complication, in language, would refult from it? Were I under the neceflity of employing a particular term to denote every fheet of paper in my bureau, or if I fhould, from caprice, think fit to give each a particular name, this would be as ufelefs to myfelf as to others.

It is, then, a very imperfect defcription of language to fay, that men have, from the firft, impofed on all individual objects, certain names to ferve them for figns. The words of a language exprefs general notions, and you will rarely find one which marks only a fingle individual. The name, Alexander the Great, is applicable to one particular perfon; but then it is a compound name. There may have been many thoufands of Alexanders, and the epithet great, extends to an infinite number of things. It is thus, that all men bear names, to diftinguifh them from others, though thefe names may be frequently common to many.

The effence of a language confifts, rather, in it's containing words to denote general notions; as that of tree correfponds to a prodigious number of individual beings. Thefe words ferve not only to convey to others, who underftand the fame language, the fame idea which I affix to the words; but they are, likewife, a great affiftance to me, in reprefenting this idea to myfelf. Without the word tree, which
reprefents to me the general notion of a tree, I muft innagine to myfelf at once a cherry-tree, a pear-tree, an apple-tree, a fir, \&cc. and thence extract what they have in common. This would neceffarily opprefs the mind, and fpeedily involve it in the greateft perplexity. But having, once for all, determined to exprefs, by the term tree, the general notion formed by abftraction, this term always excites in my foul the fame notion, without my having occafion to recollect it's origin ; and, accordingly, the word tree alone, for the moft part, conftitutes the object of the foul, without the reprefentation of any real tree.

The word man is, in like manner, a fign to denote the general notion of what all men have in common, and it would be very difficult to tell or to make the enumeration of all that this notion contains. Would you fay that he is a living two-legged being? A cock would likewife be included in this defcription. Would you fay, in the words of Plato's definition, that he is a two-legged animal without feathers? You have only to ftrip the cock of his feathers, in order to obtain the Platonic man.

I do not know whether thofe who fay that man is an animal endowed with reafon, exprefs themfelves more accurately : for how often do we take for men certain beings of whofe rationality we have no affurance. On viewing an army, I have not the leaft doubt that every foldier is a man, though I have not the finalleft proof that they are all endowed with reafon. If I were to make an enumeration of all the members neceffary to conftitute a man, fome men
would always be found defective in one, perhaps in feveral of thefe, or we might find fome beaft who had them all. On inveftigating, therefore, the origin of the general notion of man, it is almoft impoffible to fay wherein it confifts.

No one, however, has any doubt refpecting the fignification of the word; becaufe every one, wifh. ing to excite this notion in his foul, has only to think on the word man, as if he faw it written on paper, or heard it pronounced, according as the refpective language of any one may be.

Hence we fee that, for the moft part, the objects of our thoughts are not to much the things themfelves, as the words by which thefe things are denoted in language; which greatly facilitates the exercife of thought. What idea, in fact, do we affociate with the terms virtue, liberty, goodnefs, \&c.? Not furely a fenfible image; but the foul having once formed the abftract notions which correfpond to thefe terms, afterwards fubftitutes them, in it's thoughts, in place of the things which they denote.

You may eafily conceive how many abftractions it was neceffary to make, in order to arrive at the notion of virtue. The actions of men were firft to be confidered; they were, then, to be compared with the duties impofed on them ; in confequence of this, we give the name of virtue to the difpofition which. a man has to regulate his actions conformably to his duties. But, on hearing the word virtue rapidly pronounced in converfation, do we always connect with it this complex notion? And what idea is ex-
cited in the mind, on hearing the particle and or alfo pronounced? It is readily feen, that thefe words import a fpecies of connection, but take what pains you pleafe to defcribe this connection, you will find yourfelf under the neceffity of employing other words, whofe fignification it would be equally difficult to explain; and if I were to attempt an explanation of the import of the particle and, I muft make frequent ufe of that very particle.

You are now enabled to judge of what advantage language is to direct our thoughts; and that, without language, we fhould hardly be in a condition to think at all.

10th February, 1760.

LETTER CII.

Of the Perfections of a Language. Fudgments and $N a$ ture of Propofitions, affirmative and negative; univerfal, or particular.

IHAVE been endeavouring to thew you, how neceffary language is to man, not only for the mutual communication of fentiment and thought, but, likewife, for the improvement of the mind, and the extenfion of knowledge.

Thefe figns, or words, reprefent, then, general notions, each of which is applicable to an infinite number of objects : as, for inftance, the idea of hot, and of heat, to every individual object which is hot ; and
the idea, or general notion of tree, is applicable to every individual tree in a garden, or a foreft, whether cherries, pears, oaks, or firs, \&c.

Hence you muft be fenfible how one lánguage may be more perfect than another. A language always is fo, in proportion as it is in a condition to exprefs a greater number of general notions, formed by abftraction. It is with refpect to thefe notions that we muft eftimate the perfection of a language.

Formerly there was no word in the Ruffian language to exprefs what we call juftice. This was certainly a very great defect ; as the idea of juftice is of very great importance in a great number of our judgments and reafonings, and as it is fcarcely poffible to think of the thing itfelf without a term expreffive of it. They have, accordingly, fupplied this defect, by introducing into that language a word which conveys the notion of juftice.

Thefe general notions, formed by abftraction, are the fource of all our judgments and of all our reafonings. A judgment is nothing elfe but the affirmation, or negation, that a notion is applicable, or inapplicable; and when fuch judgment is expreffed in words, we call it a propofition. To give an example: All men are mortal, is a propofition which contains two notions ; the firft, that of men in general ; and the fecond, that of mortality, which comprehends whatever is mortal. The judgment confifts in pronouncing and affirming, that the notion of mortality is applicable to all men. This is a judgment, and, being expreffed in words, it is a propofition; and, becaufe
it affirms, we call it an an afirmative propofition. If it denied, we would call it negative, fuch as this, no man is righteous. Thefe two propofitions, which I have introduced as examples, are univerfal, becaufe the one affirms of all men, that they are mortal, and the other denies that they are righteous.

There are likewife particular propofitions, both negative and affirmative; as, fome men are learned, and fome men are not wife. What is here affirmed, and denied, is not applicable to all men, but to fome of them.

Hence we derive four fpecies of propofitions. The firft is that of affirmative and univerfal propofitions, the form of which in general is:

$$
\text { Every } \mathrm{A} \text { is } \mathrm{B} \text {. }
$$

The fecond fpecies contains negative and univerfal propofitions, the form of which in general is:

No A is B.
The third is, that of affirmative propofitions, but particular, contained in this form :

Some A is B.
And, finally, the fourth is that of negative and particular propofitions, of which the form is:

Some A is not B.
All thefe propofitions contain, effentially, two notions, A and B, which are called the terms of the pron pofition: the firft of which affirms or denies fome thing; and this we call the fubject; and the fecond, which we fay is applicable, or inapplicable, to the firft, is the attribute. Thus, in the propofition, All men are mortal, the word man, or men, is the fubject, and the word mortal the attribute: thefe words are
much ufed in logic, which teaches the rules of juft reafoning.

Thefe four fpecies of propofitions may likewife be reprefented by figures, fo as to exhibit their nature to the eye. This muft be a great affiftance toward comprehending more diftinctly wherein the accuracy of a chain of reafoning confifts.

As a general notion contains an infinite number of individual objects, we may confider it as a fpace in which they are all contained. Thus for the notion of man we form a fpace (plate I. fig. 1.) in which we conceive all men to be comprehended. For the notion of mortal, we form another, (fig. 2.) in which we conceive every thing mortal to be comprehended. And when I affirm, all men are mortal, it is the fame thing with affirming, that the firft figure is contained in the fecond.
I. Hence it follows, that the reprefentation of an affirmative univerfal propofition is that in which the fpace A, (fig. 3.) which reprefents the fubject of the propofition, is wholly contained in the fpace B, which is the attribute.
II. As to negative univerfal propofitions, the two fpaces A and B , of which A always denotes the fub$j e c t$, and B the attribute, will be reprefented thus, (fig. 4.) the one feparated from the other; becaufe we fay, no A is B, or that nothing comprehended in the notion A , is in the notion B .
III. In affirmative particular propofitions, as, fome A is B, a part of the fpace A will be comprehended in the fpace B: (fig. 5.) as we fee here, that fome-
thing comprehended in thic notion A, is likewife in B.
IV. For negative particular propofitions, as, fome A is not B; a part of the face A muft be out of the fpace B , (fig. 6.) This figure refembles the preceding; but we here remark, principally, that there is fomething in the notion A , which is not comprehended in the notion B, or which is out of it.

14th February, 1761.

LETTER CIII.

Of Syllogims, and their different Forms, when the firft Propofition is univerfal.

THESE circles, or rather thefe fpaces, for it is of no importance of what figure they are of, are extremely commodious for facilitating our reflections on this fubject, and for unfolding all the boafted myfteries of logic, which that art finds it fo difficult to explain; whereas, by means of thefe figns, the whole is rendered fenfible to the eye. We may employ, then, fpaces formed at pleafure to reprefent every general notion, and mark the fubject of a propofition, by a fpace containing A, and the attribute, by another which contains B. The nature of the propofition itfelf always imports either that the fpace of A is wholly contained in the face B, or that it is partly contained in that fpace; or that a part, at leaft,
leaft, is out of the fpace B; or, finally, that the fpace A is wholly out of B.*

The two laft cafes, which reprefent particular propofitions, feem to contain a doubt, as it is not decided, whether it be a great part of A which is contained, or not contained, in B. It is even poffible,

* Mr. Euler, who is ever minutely exact in all his details, fubjoins here the following diagram, with this fhort introduction: "I fhall once more give you a vifible reprefentation of thefe figures " or emblems of the four fecies of propofitions."

Emblcms of the four Species of Propofitions.

The omiffion of this fcheme, in the Paris edition, is the more unaccountable, that the very next paragraph immediately refers to it, and is lame and inconclufive without it.-E. E.
in the cafe of a particular propofition, that the notion A may contain the notion B entirely, as in plate I. fig. 7 ; and that, at the fame time, as is clear from the figure, a part of the face A may be in the fpace B, and that a part of A may no tbe in B. Now, if A were, for example, the idea of tree in general, and B that of oak, which is contained wholly in the firf, the following propofitions might be formed:
I. All oaks are trees.
II. Some trees are oaks.
III. Some trees are not oaks.

In like manner, if of two fpaces one is entirely out of the other, as in plate I. fig. 4. I can as well fay, no A is B, as no B is A; as if I were to fay: no man is a tree, and no tree is a man.

In the third cafe, where the two notions have a part in common, as in plate I. fig. 5: it may be faid:
I. Some A is B .
II. Some B is A.
III. Some A is not B.
IV. Some B is not A.

This may fuffice to thew you how all propofitions may be reprefented by figures: but their greateft utility is manifeft in reafonings which, when expreffed in words, are called fylloogi/ms, and of which the object is to draw a juft conclufion from certain given propofitions. This method will difcover to us the true forms of all fyllogifms.

Let us begin by an affirmative univerfal propofition: Every A is B, (plate I. fig. 3.) where the fpace A is whoily in the fpace B, and let us fee how a third
notion C , muft be referred to each of the other two notions \mathbf{A} and \mathbf{B}, in order to draw a fair conclufion. It is evident in the following cafes.
I. If the notion \mathbf{C} is entirely contained in the notion A, it will be fo, likewife, in the notion B: (plate I. fig. 8.) hence refults this form of fyllogifm: Every A is B: But Every C is A: Therefore Every C is B.
Which is the conclufion.
Let the notion A, for example, comprehend all trees ; the notion B every thing that has roots, and the notion C all oaks, and then our fyllogifm will run thus:

Every tree has roots :
But Every oak is a tree:
Therefore Every oak has roots.
II. If the notion C has a part contained in A , that part will likewife be fo in B, becaufe the notion A is wholly included in the notion B, (plate I. fig. 9 añ 10 .)

Hence refults the fecond form of fyllogifm:
Every A is B:
But Some \mathbf{C} is A :
Therefore Some \mathbf{C} is \mathbf{B}.
If the notion C were entirely out of the notion A, nothing would follow with refpect to the notion B : it might happen that notion C fhould be entirely out of B , (fig. 11.) or wholly in B , (fig. 12.) or partly only in B, (fy. 13.) fo that no conclufion could be drawn.
III. But
III. But if notion C were wholly out of notion B , it would likewife be wholly out of notion A, as we fee in fig. II. Hence refults this form of fyllogifm: Every A is B:
But No C is B, or no B is C :
Therefore No C is A .
IV. If the notion C has a part out of the uotion B , that fame part will certainly likewife be out of the notion A , becaufe this laft is wholly in the notion B , (fig. 14.) Hence this form of fyllogifm :

Every ${ }^{\prime}$ A is B :
But Some C is not B :
Therefore some C is not A.
V . If the notion C contains the whole of notion B, part of notion C will certainly fall into notion A : (fig. 15.) Hence this form of fyllogifm.

Every A is B:
But Every B is C:
Therefore Some C is A .
No other form is poffible, while the firft propofition is affirmative and univerfal.

Let us now fuppofe the firft propofition to be negative and univerfal ; namely,

No A is B.
It is reprefented in fig. 4. where the notion A is entirely out of notion B; and the following cafes will furnifh conclufions.
I. If notion C is entirely in notion B, it muft likewife be entirely out of notion A, (fig. 16.) Hence this form of fyllogifm:

Vol. I.
D d
No

No A is B :
But Every C is B:
Therefore No C is A.
II. If notion C is entirely comprehended in notion A, it muft alfo be entirely excluded from notion B, (fig. 17.) Hence a fyllogifm of this form:

No A is B :
But Every C is A:
Therefore No C is B .
III. If notion C has a part contained in notion A , that part muft certainly be out of notion B ; as in fig. 18. or in fig. 19. and 20. Hence a fyllogifm of this form :

No \mathbf{A} is \mathbf{B} :
But Some C is A, or fome A is C :
Therefore Some C is not B.
IV. In like manner, if notion C has a part contained in B, that part will certainly be out of A: as in fig. 21 . as alfo fig. 22. and 23. Hence the following fyllogifm :

$$
\text { No } A \text { is } B:
$$

But Some C is B, or fome B is \mathbf{C} :
Therefore Some C is not A.
As to the other forms, in which the firft propofition is particular, affirmative, or negative; I fhall fhew, in another letter, how they may be reprefented by figures.

[^38]
LETTER CIV.

Different Forms of Syllogifms, whofe firf Propofition is particular.

IN the preceding letter I have prefented you with the different forms of fyllogifms, or fimple reafonings, which derive their origin from the firft propofition, when it is univerfal, affirmative, or negative. It ftill remains that I lay before you thofe fyllogifms, whofe firft propofition is particular, affirmative, or negative, in order to have all poffible forms of fyllogifm that lead to a fair conclufion.

Let, then, the firft propofition, affirmative, and particular, be expreffed in this general form.

Some A is B. (Plate I. fig. 5.)
in which a part of the notion A is contained in the notion B .

Let us introduce a third notion C , which, being referred to notion A, will either be contained in notion A, as in $f g .24,25$, and 26 ; or will have a part in the notion A , as in fig. 27,28 , and 29 ; or will be entirely out of notion A, as in fig. 1, 2 , and 3, of plate II. No conclufion can be drawn in any of thefe cafes ; as it might be poffible for notion C to be entirely within notion B , or in part, or not at all.

But if notion C contains, in itfelf, notion A , it is certain, that it will likewife contain a part of notion B : as in fig. 4 and 5, of plate II. Hence refults this form of fyllogifm :

Some A is B: But Every A is C :

Therefore Some C is B .
It is the fame when we compare notion C with notion B: we can draw no conclufion unlefs notion C contains notion Bentirely; (fee fig. 6 and 7.) for in that cafe, as notion A has a part contained in notion B, the fame part will then certainly be contained, likewife, in C: hence we obtain this form of fyllogifm : Some A is B:
But Every B is C :
Therefore Some C is A.
Let us finally fuppofe, that the firft propofition is negative and particular, namely, Some A is not B.
It is reprefented in plate II. fig. 8: in which part of notion A is out of notion B.

In this cafe, if the third notion C contains notion A entirely, it will certainly alfo have a part out of notion B , as in fig. 9 and 10 : which gives this fyllogifm :

Some A is not B:
But Every A is C :
Therefore Some C is not B.
Again, if notion C is wholly included in notion B, as A has a part out of B, that fame part will likewife certainly be out of C, (fee fig. I I and 12.) Hence this form of fyllogifm :

Some A is not B :
But Every C is B :
Therefore Some A is not C.
It may be of ufe to collect all thefe forms of fyllogifm into one table, in order to confider them at a fingle glance.

$$
\begin{aligned}
& 000000000000 \\
& \text { (B) (0) (0) } \\
& \text { (O) ©O OO © } \\
& \text { (6) (c) }{ }^{2 \times 1} \text { (ㅇ) } \\
& 00-400 \\
& \text { Qu (0) - O } \\
& \text { (0) -(2) © } \\
& \text { (2) - Q }
\end{aligned}
$$

$+\quad$.
a.

I. Every A is B: But Every C is A : Therefore Every C is B.	XI. \quad No A is B: But Some C is B: Therefore Some C is not A.
II. Every A is B : But Some C is A: Therefore Some C is B .	XII. No A is B : But Some B is C: Therefore Some C is not A.
III. Every A is B : But No C is B: Therefore No C is A.	XIII. Some A is B : But Every A is C: Therefore Some C is B.
IV. Every A is B : But No B is C: Therefore No C is A.	XIV. Some A is B: But Every B is C : Therefore Some C is A.
V. Every A is B: But Some C is not B: Therefore Some C is not A.	XV. Some A is not B : But Every A is C: Therefore Sone C is not B .
VI. Every A is B : But Every B is C : Therefore Some C is A .	XVI. Some A is not B : But Every C is B: Therefore Some A is not C.
VIl. No A is B: But Every C is A: Therefore No C is B.	XVII. Every A is B: But Some A is C: Therefore Some C is B.
VIII. No A is B: But Erery C is B: Therefore No C is A.	XVill. No A is B: But Every A is C: Therefore Some C is not B .
IX. \quad No A is B : But Some C is A: Therefore Some C is not B.	XIX. No Λ is B : But Every B is C: Therefore Some C is not A .
X. \quad No A is $\mathrm{B}:$ But Some A is C: Therefore Some C is not B .	XI. Every A is $\mathrm{B}:$, But Every A is C : Therefore Some C is B.

Of thefe twenty forms, I remark, that XVI. is the fame with V. the latter changing into the former, if you write C for A, and A for C, and begin with the fecond propofition : there are, accordingly, but nineteen different forms.

The foundation of all thefe forms is reduced to two principles, refpecting the nature of containing and contained.
I. Whatever is in the thing contained, muft likerwife be in the thing containing.
II. Whatever is out of the containing, muft likerwife be out of the contained.

Thus, in the laft form, where the notion A is contained entirely in notion B, it is evident, that if A is contained in the notion C , or makes a part of it, that fame part of notion C will certainly be contained in notion B, fo that fome C is B.

Every fyllogifm, then, confifts of three propofitions, the two firft of which are called the premijes, and the third the conclufion. Now, the advantage of all thefe forms, to direct our reafonings, is this, that if the premifes are both true, the conclufion, infallibly, is fo.

This is, likewife, the only method of difcovering unknown truths. Every truth muft always be the conclufion of a fyllogifm, whofe premifes are indubitably true. Permit me only to add, that the former of the premifes is called the major propofition, and the other the minor.

21 ft February, 1761。

LETTER CV.

Analyfis of fome Syllogifms.

IF you have paid attention to all the forms of fyllogifm, which I have propofed, you muft fee, that every fyllogifm neceffarily confifts of three propofitions: the two firft are called premifes, and the third, the conclufion. Now the force of the nineteen forms, laid down, confifts in this property common to them all, that if the two firft propofitions, or the premifes, are true, you may reft, confidently affured of the truth of the conclufion.

Let us confider, for example, the following fyllogifm.

NO VIRTU̇OUS MAN IS A SLANDERER:

$$
\begin{aligned}
& \text { But some slanderers are Learned } \\
& \text { MEN: }
\end{aligned}
$$

Therefore some learned men are not virTUOUS.
Whenever you allow me the two firft propofitions, you are obliged to allow the third, which neceffarily follows from it.

This fyllogifm belongs to form XII. The fame thing holds with regard to all the others, which I have laid down, and which the figures, whereby I have reprefented them, render fenfible. Here ${ }_{\Delta}$ we are prefented with three notions: (plate II. fig. 13.) that of virtuous men, that of flanderers, and that of learned men.

D d 4
Let

Let the fpace A reprefent the firft, fpace B the fecond, and fpace C the third. It being faid, in the firft propofition, That no virtuous man is a flanderer ; we maintain, that nothing contained in the notion of the virtuous man, that is, in the fpace A, is comprehended in the notion of the flanderer : that is, fpace B: therefore fpace A is wholly out of fpace B, (fee plate II. fig. 14.)

But it is faid, in the fecond propofition, that fome men comprehended in notion B, are, likewife, contained in that of learned, that is, in fpace C : or elfe, you may fay, that part of face B is within fpace C; (plate II, fig. 15.) where the part of fpace B, included in C , is marked with a *; which will be, likewife, part of fpace C. Since, therefore, fome part of fpace C is in B, and that the whole fpace B is out of fpace A, it is evident, that the fame part of fpace C muft, likewife, be out of fpace A, that is, fome learned men are not virtuous.

It muft be carefully remarked, that this conclufion refpects only the part * of notion C , which is comprehended in notion B : for as to the reft, it is uncertain, whether it be likewife excluded from notion A, as in plate II. fis. 16, or wholly contained in it, as in plate II. fig. 17 , or only in part, as in plate II. fig. 18.

Now, this being left uncertain, the remainder of fpace C falls not at all under confideration ; the conclufion is limited to that only which is certain, that is to fay, the fame part of fpace C, contained in fpace B, is certainly out of face A, for this laft is wholly out of fpace B.

Vol.I.
Plate II SecondSeries

-

The juftnefs of all the other forms of fyllogifm may be demonftrated in like manner; but all thofe which deviate from the nineteen forms laid down, or which are not comprehended under them, are deftitute of foundation, and lead to error and falfhood:

You will clearly difcern the fault of fuch a fyllogifm, by an example, not reducible to any of the nineteen forms :

SOME LEARNED MEN ARE MISERS:

But no miser is virtuous:
Therefore some virtuous men are not learned.
This third propofition, may, perhaps, be true; but it does not follow from the premifes. They too (the premifes) may very well be true, and, in the prefent infance, they actually are fo, but the third is not, for that, a fair conclufion : becaufe it is contrary to the nature of juft fyllogifm, in which the conclufion always muft be true, when the premifes are fo. Accordingly, the fault of the form, above propofed, is immediately difcovered, by cafting your eyes on fig. I 3. of plate.II. Let fpace A.contain all the learned; fpace B all the avaricious; and fpace C all the virtuous. Now, the firft propofition is reprefented by fig. ig. in which part * of fpace A, (the learned) is contained in fpace B , (the avaricious).

Again, in the fecond propofition, the whole fpace C , (the virtuous) is out of face B , (the avaricious): but it by no means follows, (fig. 20.) that part of fpace C muft be out of fpace A.

It is even poffible for fpace C , to be entirely within fpace
fpace A, as in fig. 21 , or entirely out of it, as in fig. 22 . and, at the fame time, entirely out of fpace B.

A fyllogifm of this form, accordingly, is totally falfe and abfurd.

Another example will put the matter beyond a doubt:

SOME TREES ARE OAKS :

But No OAK IS A FIR:
Therefore some firs are not trees.
This form is, precifely, the fame with the preceding, and the falfhood of the conclufion is manifeft, though the premifes are undoubtedly true.

But whenever a fyllogifm is reducible to one of the above nineteen forms, you may be affured, that if the two premifes are true, the conclufion unquef-, tionably always is fo too. Hence you perceive, how, from certain known truths, you attain others before unknown; and that all the reafonings, by which we demonftrate fo many truths in geometry, may be reduced to formal fyllogifms. It is not neceffary, however, that our reafonings fhould always be propofed in the fyllogiftic form, provided the fundamental principles be the fame. In converfation, in difcourfe, and in writing, we rather make a point of avoiding fyllogifm.

I muft farther remark, that, as the truth of the premifes brings forward that of the conclufion, it does not thence neceffarily follow, that when one or both of the premifes are falfe, the conclufion muft be fo likewife : but it is certain, that when the conclu-
fion is falfe, one of the premifes, or both, abfolutely muft be falfe; for if they were true, it would be impoffible that the conclufion fhould be falfe, I have ftill fome farther reflections to fubmit to you, on this fubject, which is the foundation of the certainty of all the knowledge we acquire.
${ }_{2} 4^{t b}$ February, 1761.

L E T TER CVI.

Different Figures and Modes of Syllogims.

THE reflections which I have fill to make on the fubject of fyllogifm, may be reduced to the following articles:
I. A fyllogifm contains only three notions, named terms, in as far as they are reprefented by words. For though a fyllogifm contains three propofitions, and each propofition two notions, or terms ; it muft be confidered, that each term is twice employed in it, as in the following example:
Every A is B:

But every A is C :
Therefore some C is B.
The three notions are marked by the letters A. B. C. which are the three terms of this fyllogifm : of which, the term A enters into the firft and fecond propofition; the term B into the firft and third propofition; and the term C into the fecond and third propofition.
II. You
II. You muft carefully diftinguifh thefe three terms of every fyllogifm. Two of them, namely, B and C, enter into the conclufion, the one of which, C , is the fubject, and the other, B , the attribute, or predicate. In logick, the fubject of the conclufion, C , is called the minor term, and the predicate of the conclufion, B , the major term. But the third notion, or the term A, is found in both premifes, and it is combined with both the other terms, in the conclufion. This term, A, is called the mean or medium term. Thus, in the following example.

NO MISER IS VIRTUOUS:

But some Learned men are misers:
Therefore some learned men are not virtuous.
The notion learned is the minor term, that of virtuous is the major, and the notion of mifer, is the mean term.
III. As to the order of the propofitions, it is a matter of indifference, whether of the premifes is in the firft or fecond place, provided the conclufion holds the laft, it being the confequence from the premifes. Logicians have, however, thought proper to lay down. this rule:

The firft propofition is always that which contains the predicate of the conclufion, or the major term; for this is the reafon that we give to this propofition the name of. the major propofition.

The fecond propofition contains the minor term, or the fiubject of the conclufion, and bence it bas the name of the minor propofition.

Thus, the major propofition of a fyllogifm contains
the mean term, with the major term, or predicate of the conclufion ; and the minor propofition contains the mean term, with the minor term, or fubject, of the conclufion.
IV. Syllogifms are diftinguifhed under different figures, according as the mean term occupies the place of fubject, or attribute, in ${ }_{i}$ the premifes.

Logicians have eftablifhed four figures of fyllogifins ${ }_{2}$ which are thus defined:

The firft figure is that in which the mean term is the fubject, in the major propofition, and the predicate, in the minor.

The fecond figure, that in which the mean term is the predicate, in both the major propofition, and the minor.

The third figure, that in which the mean term is the fubject, in both the major and minor propofitions. Finally,

The fourth figure, is that in which the mean term is the predicate, in the major propofition, and the fubject, in the minor.

Let P be the minor term, or fubject of the conclufion: Q the major term, or predicate, of the conclufion, and M the mean term ; the four figures of fyllogifm will be reprefented in the manner following:

Figure Firf.

Major Propofition	M
Minor Propofition	P
Conclufion	P

Figure

Figure Second.

Figure Third.

Major Propofition	M	-
Minor Propofition	M	Q
Conclufion	P	$-\quad-$
P		

Figure Fourth.

V. Again, according as the propofitions themfelves are univerfal, or particular, affirmative, or negative, each figure contains feveral forms, called Modes. In order, the more clearly, to reprefent thefe modes of each figure, we mark by the letter A, univerfal affirmative propofitions ; by the letter E , univerfal negative propofitions ; by the letter I, particular affirmative propofitions : and, finally, by the letter O, particular negative propofitions: or elfe,

A reprefents an univerfal affirmative propofition.
E reprefents an univerfal negative propofition.
I reprefents a particular affirmative propofition.
O reprefents a particular negative propofition.
VI. Hence, our nineteen forms of fyllogifm, above defcribed, are reducible to the four figures, which I have juft laid down, as in the following tables;
I. Modes

I. Modes of the Firft Figure.

Ift Mode. A. A. A. Every M is Q ; But Every P is M : Therefore Every P is Q .	ad Mode. A. I. I. Every M is Q; But Some \mathbf{P} is M : Therefore Some \mathbf{P} is \mathbf{Q}.
3d Mode. E. A. E. No M is Q; But Every P is M : Therefore no P is Q .	4th Mode. E. I. O. No M is Q; But Some P is M : Therefore Some P is not Q.

II. Modes of the Second Figure.

Ift Mode.	2d Mode.
A. E. E.	A. O. O.
Every Q is M;	Every Q is M;
But No P is M :	But Some P is not M:
Therefore No P is Q.	Therefore Some P is not Q.
3 Mode.	4th Mode.
E. A. E.	E. O.
No Q is M ;	No Q is M ;
But Every P is M :	But Some P is M :
Therefore No P is Q.	Therefore Some P is not Q.

III. Modes of the Third Figure.

Ift Mode. A. A. I. Every M is Q; But Every M is P: Therefore Some P is Q .	2d Mode. I. A. I. Some M is $Q ;$ But Every M is \mathbb{P} : Therefore Some P is Q.
3d Mode. A. I. I. Every M is Q; But Some M is P : Therefore Some P is Q.	4th Mode. E. A. O. No M is Q; But Every M is P: Therefore Some P is not Q .
5th Mode. E. I. O. No M is Q; But Some M is P : Therefore Some P is not Q.	6th Mode. O. A. O. Some M is not Q; But Every M is P: Therefore Some P is not Q .

IV. Modes of the Fourth Figure.

1ft Mode.	2d Mode.
A. A. I.	I. A. I.
Every Q is M;	Some Q is M ;
But Every M is P: Therefore Some P is Q .	But every M is P : Therefore Some P is Q .
3d Mode.	4th Mode.
A. E. E.	E. A. O.
Every Q is M;	No Q is M;
But No M is P :	But Every M is P:
Therefore No P is Q .	Therefore Some P is not Q .

$$
\begin{gathered}
5^{\text {th }} \text { Mode. } \\
\text { E. I. O. } \\
\text { No } Q \text { is M: }
\end{gathered}
$$

But Some M is P :
Therefore some P is not Q .

You fee, then, that the firft figure has four modes; the fecond four ; the third fix ; the fourth five; fo that the whole of thefe modes, together, is nineteen, being precifely the fame forms which I have above explained, and have juft now difpofed in the four figures. In other refpects, the juftnefs of each of thefe modes has been already demonftrated, by the fpaces which I employed, to mark the notions. The only difference confifts in this, that here I make ufe of the letters, P, Q, M, inftead of A, B, C.
$28 t b$ Febraary, 1761 .

LE T TER CVII.

Obfervations and Reflections, on the different Modes of Syllogim.

IFLATTER myfelf, that the following reflections will contribute, not a little, to place the nature of fyllogifms in a clearer light. You muft pay particular attention to the fpecies of the propofitions which compofe the fyllogifms, of each of our four figures, that is to fay, whether they are,

1. Univerfal affirmative, the fign of which is A; or
2. Univerfal negative, the fign of which is E ; or
3. Particular affirmative, the fign of which is I; or, finally,
4. Particular negative, the fign of which is O ; and you will readily admit the juftnefs of the following rcflections:

Vol. I,
Ee
I. In
I. In no one inftance are both premifes negative propofitions. Logicians have hence formed this rule :

From two negative propofitions, no conclufion can be drawn.

The reafon is evident, for laying down P and Q, as the terms of the conclufion, and M as the mean term, if both premifes are negative, the affirmation, is, that the notions P and Q, are either wholly, or in part, out of M : it is, accordingly, impofible to conclude any thing, refpecting the conformity, or difconformity, of the notions P-and Q . Though I knew from hiftory, that the Gauls were not Romans, and that neither were the Celtre Romans, this would not contribute in the leaft to inform me whether the Celtæ were Gauls or not. Two negative premifes, therefore, lead to no conclufion.
II. Both premifes are, in no one inftance, particular propofitions; hence this rule is logic:

From two particular propofitions, no conclufion cane be drawn.

Thus, for example, becaufe fome learned men are poor, and fome others malevolent, it is impoffible to conclude, that thofe who are poor are malevolent, or that they are not fo. If you reflect ever fo little on the nature of a confequence, you muft immediately perceive, that two particular premifes lead to no conclufion whatever.
III. If either of the premifes is negative, the conclufion too muft be negative.

This is the third rule which logic prefcribes. When fomething
fomething is denied in the premifes, it is impoffible to affirm any thing in the conclufion; we muft abfolutely deny there likewife. This rule is perfectly confirmed by all the laws of fyllogifin, whofe juftice has been above demonftrated.
IV. If one of the premifes is particular, the conclufion too muft be particular.

This is the fourth rule prefcribed in logic. The character of particular propofitions being the word fome, if we fpeak only of fome in one of the premifes, it is impofible to fpeak generally, in the conclufion;* it muft be reftricted to fome. This rule, likewife, is confirmed by all the laws of fyllogifm, whofe juftnefs is indubitable.
V. When both premijes are affirmative, the conclufinn is fo likervife. But thoughb both premifes may be univerfal, the conclufion is not always univerfal, fometimes it is particular only, as in the firft mode of figures third and fourth.
VI. Befide univerfal and particular propofitions, we, fometimes, make ufe of fingular propofitions, the fubject of which is an individual ; as when I fay:
Virgil was a great Poet,

The name of Virgil is not a general notion, contain. ing feveral beings in itfelf: it is the proper name of a real individual, who lived a great many years ago. This propofition is called fingular ; and when it is introduced into a fyllogifm, it is of importance to determine, whether we are to confider it as holding the rank of an univerfal, or particular, propofition.

E e 2 VII. Certain
VII. Certain authors infift, that a fingular propofition muft be ranked in the clafs of particulars; it being confidered, that a particular propofition fpeaks only of fome beings comprehended in the notion, whereas an univerfal propofition fpeaks of all. Now, fay thefe authors, when we fpeak of only a fingular being, this is fill lefs than when we fpeak of fome: and, confequently, a fingular propofition muft be confidered as very particular.
VIII. However well founded this reafoning may appear, it cannot be admitted. The eflence of a particular propofition confifts in this, that it does not fpeak of all the beings, comprehended in the notion of the fubject, whereas an univerfal propofition fpeaks of all, without exception. Thus, when it is faid :

Some citizens of Berlin are rich,

the fubject of this propofition is the notion of all the citizens of Berlin; but this fubject is not taken in all it's extent, it's fignification is exprefsly reftricted to fone: and, by this, particular propofitions are effentially diftinguifhed from univerfal, as they turn only on a part of the beings comprehended in their fubject.
IX. It is clearly evident, from this remark, that a fingular, propofition muft be confidered as univerfal; as, in fpeaking of an individual, fay Virgil, it, in no rcfpect, reftriets the notion of the fubject, which is Virgil himfelf, but rather admits it in all it's extent : and', for this reafon, the fame rules wobich take place in univerfal propofitions apply, likewife, to fingular propoo
filions. The following is, accordingly, a very good fyllogifm :

VOLTAIRE IS A PHILOSOPHER;
But voltaire is a poet :
Therefore some poe'rs are philosophers.
And it would be faulty, if the two premifes were particular propofitions, but being confidered as univerfal, this fyllogifm belongs to figure third, and the firft mode of the form A. A. I. The individual idea of Voltaire is the mean term, which is the fubject of both major and minor ; and this is the character of figure third.
X. Finally, I muft remark, that hitherto I have fpoken only of fimple propeftitions, which contain only two notions, the one of which is affirmed or denied, univerfally, or particularly. With refpect to compound propofitions, logic prefcribes peculiar rules.
3d March, 1761.

LETTER CVIII.

Hypotbetical Propofitions, and Syllogifins conforuaied of them.

WE have, hitherto, confidered fimple propofitions only, or fuch as contain but two notions, the one of which is the fubject, the other the predicate. Thefe propofitions can form no other fyllogifms, except thofe which I have laid before you, and which are contained in the four figures above explained. But we, likewife, frequently employ E e_{3} compount
compound propofitions, which contain more than two notions, and refpecting which other rules are to be obferved, in order to deduce fair conclufions from them.

Of thefe compound propofitions, the moft common are thofe which are called bypotbetical, or conditional, which contain two complete propofitions, with an affirmation, that, if the one is true, the other is fo likerwife: the following is an example of a conditional propofition:

If the Gazette fpeaks truth, peace is not very diftant.
Here are two propofitions, the firft, the Gazette Jpeaks truth, or, the Gazette is true : and the other, peace is not very diftant, or peace is approaching.

Now, thefe two propofitions muft be connected together in fuch a manner, that if the firft is true, the fecond is fo likewife; or, it is maintained, that the fecond propofition is a neceffary confequence of the firft, fo that the former cannot be true, without eftablifhing the truth of the other alfo. Suppofing, then, that the Gazettes announce the approach of peace, we are warranted in faying, that, if the Ga* zettes are true, peace muft be at band.

Without this condition, fuch a propofition leads to nothing: but if this condition is complied with, then with the addition of fome other propofition, there are two ways of drawing a conclufion from it: If , When fome perfon affures us, tbat the Gazette Speaks truth; for, hence we conclude, that peace is near: 2d, When we are told, that peace is fill very
diftant; then we make no hefitation in thence concluding, that the Gazette does not Jpeak truth.

You fee that thefe two conclufions are general, and give two forms of hypothetical, or conditional, fyllogifms, which may be thus reprefented:

Firft Form.
If A is B, C will Be D ; But A is B :
Therefore C is D.
Second Form.
If A is B, C will be D ;
But C is not D :
Therefore A is not B .
Thefe two are the only juft conclufions ; and you muft be carefully on your guard againft the fallacy of the two following forms :

Firf erroneous Form.
If A is B, C will be D ;
But A is not B :
Therefore C is not D .
Second erroneous Form.
If A is B, C will be D ;
But C is D :
Therefore A is B .
Thefe are both fallacious. In the example adduced, I fhould reafon inconclufively, if I argued in this manner :

> If THE GAZETTE SPEAKS TRUTH, PEACE IS APPROACHING;

But the gazette does not speak truth: Therefore peace is not approaching,

It is, undoubtedly, true, that the Gazette may not fpeak truth; neverthelefs, it is very pofiible that peace may be approaching.

The other form is equally erroneous; If THE GAZETTE IS TRUE, PEACE APPROACHES;
But peace approaches:
Therefore the gazetie is true.
Let us fuppofe, that this confolatory truth, peace approaches, were revealed to us, fo as to be put beyond the poffibility of doubt, it would by no means follow that Gazettes are true, or that they never contain untruths. I hope, at leaft, that peace is at hiand, though I am very far from putting confidence in the truth of Gazettes.

Thefe two laft forms of fyllogifms, therefore, are fallacious ; but the two preceding are certainly good, and never lead into error, provided that the firft conditional propofition is true, or that the laft part be a neceffary confequence of the firft.

Of this conditional propofition :

$$
\text { If } A \text { is } B, C \text { will be } D \text {. }
$$

The firft part, A is B, is called the antecedent, and the other, C will be D, the conjequent. Logic prefrribes the two following rules to direct us in this ftyle of reafoning :
I. Whoever admits the antecedent, muft likewife admit the confequent.
II. Whoever denies, or rejects, the conjequent, muft likervife deny, or reject, the antecedent.

But you may very well deny the antecedent with-
out denying the confequent, and likewife admit the confequent without admitting the antecedent.

There are ftill other compound propofitions, of which alfo fyllogifms may be formed. It will, perhaps, be fufficient to produce a fingle example. Haring this propofition:

Every fubftance is body or fpirit :
the conclufion will run in the following manner:
I. But Such a fubftance is not body;

Therefore It is fpirit.
II. But Such a fubftance is body ; Therefore It is not fpirit.

But it is entirely unneceffary to detain you longer on this fubject.
${ }_{7}{ }^{t}$ b March, 176r.

L E T T E R CIX.

Of the Imprefion of Senfations on the Soul.

HAVING endeavoured to unfold the principles of logic, whofe object it is to lay down infallible rules for right reafoning, I muft fill detain you a little longer on the fubject of ideas.

We, undoubtedly, derive them, in the firfe inftance, from real objects, which frike our fenfes; and as far as they are ftruck with any object, a fenfation correfponding is thereby excited in the foul. Not only do the fenfes reprefent to the foul the idea of that object, but they give it full affurance of it's exiftence.
exifence, out of us; and it is of importance to remark, that the fenfation is not indifferent to the foul, but always accompanied with fome pleafure, or difguft, to a greater or lefs degree.

Now, having once acquired, through this medium, the idea of any object, the foul lofes it not when the object ceafes to act on our fenfes; it is only the fenfation, by which the foul is agreeably, or difagreeably affected, that is loft; but it ftill preferves the idea of the object itfelf. Not that the idea is ever prefent to it, or that it continually cherifhes fuch idea in thought; but it poffefles the power of awakening; or recalling, the idea, at pleafure.

This faculty of the foul, by which it is enabled to recollect ideas once perceived, is called reminifcence, which contains the fource of memory. Deprived of the power of recalling paft ideas, that of perceiving would anfwer little or no purpofe; if we loft, every moment, the recollection of ideas once perceived, we fhould always be in the fate of new-born infants, that is, in a fate of the moft profound ignorance. Reminifcence, then, is the moft precious gift which the Greator has beftowed on the foul of man, and here it's fpirituality fhines in the brighteft luftre; for, by means of this faculty, the foul gradually rifes to the attainment of knowledge the moft fublime.

But though recollected ideas reprefent to us the fame objects which perceived ideas do, they differ from them, however, in this, that they are not accompanied with the fenfation, nor with the conviction, that the objects really exift. If you have once
been fpectator of a conflagration, you can recall the idea of it whenever you will, without imagining, however, that there really is one. It is even poffible, that for a very long time, you may not have thought of fuch a conflagration, but without having loft the power of recalling the idea of it.

It is the fame with refpect to all the ideas which we have once perceived; but it frequently happens, that we lofe, almoft entirely, the recollection, or, in other words, forget them. We remark, neverthelefs, a very great difference between ideas forgotten, and ideas wholly unknown, or fuch as we never had. With refpect to the firft, as foon as the fame object prefents itfelf afrefh to our fenfes, we much more eafily catch the idea of it, and we recollect perfectly, that it is the fame which we had forgotten: this would not be the cafe had we never poffeffed it.

It is here the materialifts boaft of having found a demonftration of their opinions. They conclude from it, that it is extremely clear, the foul is nothing elfe but a fubtile matter, on which external objects are capable of making fome fight impreffion, by means of the fenfes: that this impreflion is nothing elfe but the idea of the objects; and that as long as it remains, the recollection is preferved; but that we forget it, when the impreflion is totally effaced.

If this reafoning were folid, ideas muft neceffarily remain always prefent with us, till we forgot them; this, however, is not the cafe; for we recall them when we pleafe; and if the impreffion were effaced, how could matter recollect, that it formerly had that impreffion,
imprefion, or receiving it afrefh ? And, thougỉ it be very certain, that the action of objects, on the fenfes, produces fome change in the brain; this change is very different from the idea which is occafioned by it ; and the fentiment of pleafure, or difguft, as well as the judgment refpecting the object itfelf, which caufed this imprefion, equally require a being wholly different from matter, and endowed with qualities of quite a different nature.

Our advances in knowledge are not limited to ideas perceived: the fame ideas, recollected in the memory, form for us, by abftraction, general ideas of them, which contain, at once, a great number of individual ideas ; and how many abftract ideas do we form, refpecting the qualities and accidents of objects, which have no relation to any thing corporeal, fuch as the notions of virtue, of wifdom, \&c.?

This, after all, refers only to the underffanding, which comprehends but a part of the faculties of the foul ; the other part is not lefs extenfive, namely, the reill and liberty, on which depend all our refolutions and actions. There is nothing in the body relative to this quality, by which the foul freely determines itfelf to certain actions, even after mature deliberation. It pays regard to motives, without being forced to fubmit to their influence; and liberty is fo effential to it, as well as to all fpirits, that it would be as impoffible to 'imagine a fpirit without liberty, as a body without extenfion. God himfelf could not diveft a fpirit of this effential property.

It is by this, accordingly, that we are enabled to
fulve all the perplexing queftions refpecting the origin of evil, the permiffion of fin, and the exiftence of all the calamities by which the world is oppreffed ; their great and only fource is human liberty. roth March, 1761.

L E T T ER CX.

Of the Origin and Permifion of Evil; and of Sin.

THE origin and permiffion of evil in the world is an article which has, in all ages, greatly perplexed theologians and philofophers. To believe that God, a Being fupremely good, fhould have created this world, and to fec it overwhelmed with fuch variety of evil, appears fo contradictory, that fome found themfelves reduced to the neceffity of admitting two principles, the one fupremely good, the other fupremely evil. This was the opinion entertaided by the ancient heretics, known in hifory by the name of Manicleans; who, feeing no other way of accounting for the origin of evil, were reduced to this extremity. Though the queftion be extremely complicated, this fingle remark, that liberty is a quality effential to fpirits, difpels, at once, a great part of the difficultics, which would otherwife be infurmountable.

In truth, when God had created man, it was too late to prevent fin, his liberty being fufceptible of no conftraint. But, I fhall be told, it would have
been better not to create fuch and fuch men, or fpirits, who, as God muft have forefeen, would abufe their liberty, and plunge into fin. I fhould deem it rather rafh to enter upon this difcuffion, and to pretend to judge of the choice which God might have been able to make, in creating fpirits; and, perhaps, the plan of the univerfe required the exiftence of fpirits of every poffible defcription. And, in fact, when we reflect, that not only our earth, but all the planets, are the habitations of rational beings; and that even all the fixed fars are funs, each of which may have around it a fyftem of planets, likewife habitable, it is clear, that the number of all the beings endowed with reafon, which have exifted, which da exift, and which fhall exift, in the whole univerfe, muit be infinite.

It is, therefore, unpardonable prefumption to infinuatc, that God ought not to have granted exifcncé to a great number of fpirits; and the very perfons, who thus reproach their Maker, would certainly not wifh to be of the number of thofe to whom cxiftence was denied. This firft objection, then, is fufficiently done away; and it is no way inconfiftent with the Divine perfections, that exiftence has been beftowed on all fpirits, good and bad.

It is next alleged, that the mifchievoufnefs of fpirits, or reafonable beings, ought to have been repreffed by the divine Omnipotence. On this I remark, that liberty is fo effential to all fpirits, as to be beyond all power of conftraint ; the only method of governing fpirits confifts in the ufe of motives, to difpofe,
them to what is good, and to diffuade them from evil; but, in this refpect, we find not the flighteft ground of complaint. The moft powerful motires have, undoubtedly, been propofed to all fpirits, to incline them to good, thefe motives being founded on their own falvation; but they by no means employ conftraint, for this would be contrary to their nature, and in all refpects impoffible.

However wicked men may be, it never can be in their power to excufe themfelves, from ignorance of the motives which would have prompted them to good: the divine law, which conftantly aims at their everlafting happinefs, is engraven on their heart, and it muft always be their own fault if they plunge into evil. Religion difcovers to us, likewife, fo many other means which God employs to reclaim us from our wanderings, that, on this fide, we may reft confidently affured, that God has omitted nothing which could have prevented the malignant explofions of men, and of other reafonable beings.

But thofe who bewilder themfelves in fuch doubts refpecting the origin and the permiffion of evil in the world, perpetually confound the corporeal with the fpiritual world; they imagine that fpirits are, as bodies, fufceptible of conftraint. Severe difcipline is, frequently, capable of preventing, among the children of a family, the foldiers of an army, or the inhabitants of a city, the open eruption of perverfe difpofitions; but it muft be carefully remarked, that this conftraint extends only to what is corporeal; it, in no refpect, reftains the fpirit from being as
vicious, and as malignant, as if it enjoyed the moft unbounded licence.

Human governments muft reft contented with this exterior, or apparent tranquillity, and give themfelves little trouble about the real difpofitions of men's minds; but, before God, the thoughts all lie open, and perverfe inclinations, however concealed from men, are as abominable in his fight, as if they. had broke out into the moft atrocious actions. Men fuffer themfelves to be dazzled by falfe appearances; but God has refpect to the real difpofitions of every fipirit, according as they are virtuous, or vicious, independently of the actions which flow from them.

The Holy Scriptures contain, to this purpofe, the moft pointed declarations, and inform us, that he who meditates only the deftruction of his neighbour, fuffering himfelf to be hurried away by a firit of hatred, is as criminal in the fight of God, as the actual murderer; and that he who indulges a covetous दdelie of another's property is, in his eftimation, as much a thief as he who really fteals.

In this refpect, therefore, the government of God over firits, or rational beings, is infinitely different from that which men exercife over men like themfelves; and we greatly err, if we imagine that a government, which appears the beft in the eyes of men, is really fo in the judgment of God. This is a refleztion of which we ought never to lofe fight.

$$
\text { forb Marc', } 1 ; 6 \mathrm{I} \text {. }
$$

LETTER CXI.

Of moral and phyfical Evil.

WHEN complaint is made of the evil which prevails in the world, a diftribution of them into two claffes takes place: moral cvils and phyfical evils. The clafs of moral evils contains the perverfe or vicious inclinations, the difpofitions of fpirits to what is evil or criminal, which is undoubtedly the moft grievous calamity and the greateft imperfection which can exif.

In truth, with regard to fpirits, it is impoffible to conceive a more deplorable irregularity, than when they deviate from the eternal laws of virtue, and abandon themfelves to the commiffion of vice. Virtue is the only means of rendering a fpirit happy; to beftow felicity on a vicious fpirit is beyond the power of God himfelf. Every fpirit addicted to vice is neceffarily miferable, and, unlefs it return to virtue, it's mifery cannot come to an end : fuch is the idea I form of demons, of wicked and infernal fpirits; an idea which, to me, appears confonant to what Scripture fuggefts on the fubject.

Infidels make a jeft of this; but as men cannot pretend to be the beft of all rational beings, neither can they boaft of being the moft wicked; there are, undoubtedly, beings much more depraved than the moft malignant of mankind, fuch as devils. But I have already made it appear, that the exiftence of fo

Vol. I.
many corrupted men and fpirits, ought not to form any objection againft the perfection of this world, much lefs be confidered as an imputation of the Supreme Being.

A fpirit, the devil not excepted, is always a being, excellent; and infinitely fuperior to every thing that can be conceived in the corporeal world; and this world, as far as it contains an infinite number of fpirits, of all orders, is always a work of the higheft perfection. Now, all fpirits being effentially free, criminality was poffible from the commencement of their exiftence, and could not be prevented even by the divine Omnipotence. Befides, fpirits are the authors of the evils which neceffarily refult from fin, every free agent being always the only author of the evil which he commits; and, confequently, thefe evils cannot be imputed to the Creator; as among men, the workman who makes the fword is not refponfible for the mifchief that is done with it. Thus; with refpect to the moral evils which prevail in the world, the fovereign goodnefs of God is fufficiently juftified.

The other clafs, that of phyyical evils, contains all the calamities and miferies to which men are expofed in this world. It is admitted, that moft of thefe are a neceffary confequence of the malice, and other vicious propenfities with which men, as well as other fpirits, are infected; but as thefe confequences are communicated by means of bodies, it is afked, Why God fhould permit to wicked fpirits, the power of acting fo efficacioufly on bodies; and of employing
them
them as inftruments to execute their pernicious purpofes? A father, who faw his fon on the point of committing a murder, would fnatch the fword out of his hand, and prevent the perpetration of a crime fo heinous. I have already obferved, that this abandoned fon is equally guilty before God, whether he has actually accomplifhed his defign, or only made ineffectual efforts to execute it, and the father, who prevented him, does not thereby render him better.

We may, neverthelefs, confidently maintain, that God does not permit a free courfe to the wickednefs of man. Did nothing refift the execution of all the pernicious purpofes of the human heart, how miferable fhould we be! We frequently fee, that the wicked have great difficulties to encounter, and though they fhould fucceed, they have no power over the confequences of their actions, which always depend on fo many other circumfances, that, in the iffue, they produce the directly oppofite effect from what was intended. It cannot be denied, at the fame time, that there may refult from thefe, calamities and miferies to torment mankind; and it is imagined, that the world would be infinitely better governed, were God to interpofe an effectual reftraint to the wickednefs and audacity of men.

It would, undoubtedly, be very eafy for God to crufh to death a tyrant, before he could realize his cruel and oppreflive defigns, or to ftrike dumb an unjuft judge, who was going to pronounce an iniquitous fentence. We might then live quietly, and enjoy all the comforts of life, fuppofing God were
to grant us the bleffings of health, and all the good things we could wifh for: our happinefs would thus be perfect. On this plan they would have the world governed, in order to render us all happy: the wicked difabled to perpetrate their criminal purpofes, and the good in poffefion of the peaceful enjoyment of all the bleflings which they can defire.

It is believed, and with good reafon, that God wifhes the happinefs of men, and it is matter of furprize, that this world fhould be fo different from the plan which is imagined the moft proper for the attainment of this end. We rather fee the wicked frequently enjoying, not only all the advantages of this life, but put in a condition to execute their machinations, to the confufion and diftrefs of perfons of worth, while the good are oppreffed and overwhelmed by the moft fenfible evils, pains, difeafes, mortifications, lofs of goods, and, in general, by every fpecies of calamity; and that, at laft, the good as well as the bad, muft infallibly die, which appears to be the greateft of all evils.

Looking on the world in this point of view, one is tempted to call in queftion the fupreme wifdom and goodnefs of the Creator ; but it is a hazard which we muft take great care to fhun.

17th March, 1761.

LETTER CXII.

Reply to Complaints of the Exifence of phyyical Evil.

SUPPOSING our exiftence limited to the prefent life, the pofferfion of the good things of this world, and the enjoyment of every delight, would be very far from filling up the meafure of our happinefs. All are agreed, that true felicity confifts in mental tranquillity and fatisfaction, which are feldom, if ever, accompanied with that brilliancy of condition, which is confidered as fuch an ineftimable bleffing, by thofe who judge only from appearances.

The infufficiency of temporal good things to render us happy, becomes ftill more manifeft, when we come to reflect on our real deftination. Death does not put a period to our exiftence, it rather tranfmits us into another life, which is to endure for ever. The faculties of our foul, and our attainments in knowledge, will then, no doubt, be carried to the higheft perfection; and it is on this new fate that our real happinefs depends, and this ftate cannot be happy without virtue.

The infinite perfections of the Supreme Being, which we now perceive only as through a thick cloud, thall then fhine in the brighteft luftre, and fhall become the principal object of our contemplation, admiration, adoration. There, not only fhall our underftanding find the moft inexhauftible ftores of pure and perfect knowledge, but we fhall be per-
mitted to hope for admiffion into favour with the Supreme Being, and to afpire after the moft endearing expreffions of his love. How happy do we reckon the peculiar favourites of a great prince, efpecially if he is really great, though the favours which he beftows are marred by many infufions of bitternefs? What will it then be, in the life to come, when God himfelf flall Jhed abroad bis love in our hearts, a lowe the effects of which fhall never be interrupted nor deftroyed! This fhall, thenceforward, conftitute a felicity infinitely furpailing all that we can conceive.

In order to a participation of thefe inexpreffible favours, flowing from the love of the Supreme Being, it is natural that, on our part, we fhould be penetrated with fentiments of the moft lively affection to him. This bleffed union abfolutely requires, in us, a certain difpofition, without which we fhould be incapable of participating in it ; and this difpofition confifts in virtue, the bafis of which is the love of God, and that of our neighbour. The attainment of virtue, then, fhould be our chief, our only object in this life, where we exift but for this end, to prepare for, and to render ourfelves worthy of partaking in fupreme and eternal felicity.

In this point of view, we muft form a judgment of the events which befall us in this life. It is not the poffeffion of the good things of this world that renders us happy; it is rather, a fituation which moft effectually conducts to virtue. If profperity were the certain means of rendering us happy, we might be fuffered to complain of adverfity ; but ad-
verfity may rather have the effect of confirming our virtue, and, in this view, all the complaints of men, refpecting the phyfical evils of life, are, likewife, completely done away.

You have no difficulty, then, in comprehending, that God had the moft folid reafons for admitting into the world fo many calamities and miferies, as the whole obvioufly contributes to our falvation. It is unqueftionably true, that thefe calamities are, for the moft part, natural confequences of human corruption ; but it is in this very thing, that we muft principally admire the wifdom of the Supreme Being, who knows how to over-rule the moft vicious actions, for our final happinefs.

Many good people would not have reached fuch a fublimity of virtue, had they not been oppreffed, and tormented, by cruelty and injuftice.

I have already remarked, that bad actions are fuch, only with regard to thofe who commit them : the determination of their foul alone is criminal, the action itfelf being a thing purely corporeal, in as much as, confidered independently of the perfon who commits it, there is nothing, either good or evil, in the cafe. A mafon falling from the roof of a houfe upon a man, as certainly kills him as the moft determined affaflin. The action is abfolutely the fame; but the mafon is not guilty in the flighteft degree; whereas the affaflin deferves the fevereft punifhment. Thus, however criminal actions may be, with regard to thofe who commit them, we muft confider them in quite a different light as they
affect ourfelves, or produce an influence on our fituation.

We ought, therefore, to reflect, that nothing can befall us, but what is perfectly confonant to the fovereign wifdom of God. The wicked may be guilty of injuftice towards us, but we cannot upon the whole fuffer from it; no one can ever injure us, though he may greatly hurt himfelf; and in every thing that comes to pafs, we ought always to acknowledge God, as if it befell us immediately by his expreis appointment. We may, moreover, reft affured, that it is not from caprice, or merely to vex us, that God. difpofes the events in which we are concerned, but that they muft infallibly terminate in our true happinefs. Thofe who confider all events in this light, will foon have the fatisfaction of being convinced; that God exercifes a peculiar care over them,

21/t March, 1761.

L ETTER CXIII.

The real Deftination of Man; Ufefulnefs and Necelity of Adverfity.

IHOPE you have no doubts remaining, with refpect to this great queftion: How the evils of this world can be reconciled to the fupreme wifdom and goodnefs of the Creator? The folution of it is inconteftably founded on the real deftination of man,
and of other intelligent beings, whofe exiftence is not limited to this life. The moment that we lofe fight of this important truth, we find ourfelves involved in the greateft perplexity, and if man were created only for this life, it would afluredly be impoffibie to eftablifh a confiftency between the perfections of God and the diftreffes and miferies with which this world is oppreffed. Thofe miferies would be but too real; and it were abfolutely impoffible to explain, How the profperity of the wicked, and the mifery of fo many good people, could confift with the divine juftice.

But no fooner do we reflect that this life is but the commencement of our exiftence, and that it is ferving as a preparation for one that fhall endure eternally, the face of things is entirely changed, and we are obliged to form a very different judgment of the evils with which this life appears to be overfpread. I have already remarked, that the profperity which we enjoy in this world is the reverfe of a fuitable preparation for a future life, and for rendering us worthy of the felicity which there awaits us. However important to our happinefs the poffeffion of the good things of this world may appear, this quality pertains to them only in fo far as they are impreffed with the fignatures of divine goodnefs, independent of which no earthly poffeffions could confitute our felicity.

Real happinefs is to be found only in God himfelf; all other delights are but an empty fhade, and are capable of yielding only a momentary fatisfac-
tion. Accordingly we fee that thofe who enjoy the m in the greateft abundance, are quickly fatiated; and this apparent felicity ferves only to infiame their defires, and to diforder their paffions, by eftranging them from the Supreme Good, inftead of bringing them nearer to Him. But true felicity confifts in a perfect union with God, which cannot fubfift without a love and a confidence in his goodnefs, tranfcending all things : and this love requires a certain difpofition of foul, for which we muit be making preparation in this life.

This difpofition is virtue, the foundation of which is contained in thefe two great precepts:

Thou 乃balt lowe the Lord thy God with all thy beart, with all thy foul, with all thy Arength, and with all thy mind;
and the other, which is like unto it:
Thou fisalt love thy neigbbour as thyfelf.
Every other difpofition of foul which deviates from thefe two precepts, is vicious, and abfolutely unworthy to partake of true happinefs. It is as impoffible for a vicious man to enjoy happinefs in the life to come, as for a deaf man to relifh the pleafure of an exquifite piece of mufic. He muft be for ever excluded from it, not by an arbitrary decree of God, but by the very nature of the thing; a vicious man not being, from his own nature, fufceptible of fupreme felicity.

If we confider the order and economy of the world, in this point of view, nothing can be more perfectly difpofed for the attainment of this great
end. All events, the calamities themfelves which we undergo, are the moft fuitable means for conducting us to true happinefs : and in this refpect, it may be with truth affirmed, that this is, indeed, the beft world poflible, as every thing in it concurs to promote our eternal falvation. When I reflect, that nothing befalls me by chance; but that every event is directed by Providence, in the view of rendering me truly and everlaftingly happy, how ought this confideration to raife my thoughts to God, and to replenifh my foul with the pureft affection!

But, however efficacious thefe means may be in themfelves, they exercife no force upon our minds, to which liberty is fo effential, that no degree of conftraint can poffibly take place. Experience, accordingly, frequently demonfrates that our attachment to the objects of fenfe renders us too vicious to liften to thefe falutary admonitions. Abufe of the means which would have improved our virtue, plunges us deeper and deeper into vice, and hurries us alide from the only path that leads to happinefs.

[^39]
LETTER CXIIV.

Of true Happinefs. Converfion of Sinners. Reply to Objections on the Subject.

THE holy life of the apoftles, and of the other primitive Chriftians, appears to me an irrefiftible proof of the truth of the Chriftian Religion. If true happinefs confifts in union with the Supreme Being, which it is impofible for a moment to doubt, the enjoyment of this happinefs neceffarily requires, on our part, a certain difpofition, founded on fupreme love to God, and the moft perfect charity toward our neighbour, fo that all thofe who are deftitute of this difpofition, deftroy their own pretenfions to celeftial felicisy; and wicked men are, from their very nature, neceffarily excluded from it, it being impofible for God himfelf to render them happy. For the Divine Omnipotence extends only to things which are in their nature poffible, and liberty is fo effential to fpirits, that no degree of conftraint can take place with refpect to them.

It is only by motives, therefore, that fpirits can be determined to that which is good: now what motives could be propofed to the apoftles and other difciples of Jefus Chrift, to embrace a virtuous life, more powerful than the infructions of their divine Maiter, his miracles, his fufferings, his death and refurrection, of which they were witneffes. All thefe ftriking events, united to a doctrine the moft fublime,
blime, muft have excited, in their hearts, the moft fervent love and the moft profound veneration for God, whom they could not but confider and adore as at once their heavenly Father, and the abfolute Lord of the whole univerfe. Thefe lively impreffions muft neceffarily have ftifled in their breafts every vicious propenfity, and have confirmed them, more and more, in the practice of virtue.

This falutary effect on the minds of the apoftles, has nothing in it, of itfelf, miraculous, or which encroaches, in the fmalleft degree, on their liberty, though the events be fupernatural. The great requifite was, fimply, a heart docile and uncorrupted by vice and paffion. The miffion, then, of Jefus Chrift into the world, produced, in the minds of the apoftles, this difpofition, fo neceffary to the attainment and the enjoyment of fupreme happinefs; and that miffion fill fupplies the fame motives to purfue the fame end. We have only to read attentively, and without prejudice, the hiftory of it, and ferioufly to meditate on all the events.

I confine myfelf to the falutary effects of our Saviour's miffion, without prefuming to dive into the myfteries of the work of our redemption, which infinitely tranfcend the powers of human underftanding. I only remark, that thefe effects, of the truth of which we are convinced by experience, could not be produced by illufion, or human impofture; they are too falutary not to be divine. They are likewife perfectly in harmony with the inconteftable principles which
which we have laid down, that fpirits can be governed only by motives.

Theologians have maintained, and fome ftill maintain, that converfion is the immediate operation of God, without any co-operation on the part of man. They imagine that an act of the Divine will is fufficient to transform, in an inftant, the greateft mifcreant into a virtuous man. Thefe good gentlemen may mean extremely well, and confider themfelves as thus exalting the divine Omnipotence; but this fentiment feems to me inconfiftent with the juftice and goodnefs of God, even though it were not fubverfive of human liberty. How, it will with reafon be faid, if a fimple exertion of the divine Omnipotence is fufficient for the inftantaneous converfion of every finner, can it be pdffible that the decree fhould not actually pafs, rather than leave fo many thoufands to perifh, or employ the work of redemption, by which a part only of mankind is faved? I acknowledge that this objection appears to me much more formidable than all thofe which infidelity raifes againt our holy religion, and which are founded entirely in ignorance of the true deftination of man; but, bleffed be God, it can have no place in the fyftem which I have taken the liberty to propofe.

Some divines will perhaps accufe me of herefy, as if I were maintaining that the power of man is fufficient for his converfion; but this reproach affects me not, as I am confcious of intending to place the goodnefs of God in it's cleareft light. In the work
of converfion, man makes perfect ufe of his liberty, which is unfufceptible of conftraint, but man is always determined by motives. Now, thefe motives are fuggefted by the circumftances and conjunctures of his condition. They depend entirely on divine Providence, which regulates all events, conformably to the laws of fovereign wifdom. It is God, therefore, who places men every inftant in circumftances the moft favourable, and from which they may derive motives the moft powerful, to produce their converfion; fo that men are always indebted to God for the means which promote their falvation.

I have already remarked, that however wicked the actions of men may be, they have no power over their confequences, and that God, when he created the world, arranged the courfe of all events, fo that every man fhould be every inftant placed in circumftances to him the moft falutary. Happy the man who has wifdom to turn them to good account!

This conviction muft operate in us the happieft effects : unbounded love to God, with a firm reliance on his providence, and the pureft charity toward our neighbour. This idea of the Supreme Being, as exalted as it is confolatory, ought to replenifh our hearts with virtue the moft fublime, and effectually prepare us for the enjoyment of life eternal.

$$
28 t b \text { March, } 1 ; 6:
$$

LETTER CXV.

The true Foundation of buman Knowledge. Sources of Truth, and Claffes of Information derived from it.

HAVING taken the liberty to lay before you my opinion refpecting the moft important article of human knowledge, I flatter myfelf it will be fufficient to diffipate the doubts which naturally arife out of the fubject, from want of exact ideas of the liberty of fpirits.

I fhall now have the honour of fubmitting to your confideration the true foundation of all our knowledge, and the means we have of being affured of the truth and certainty of what we know. We are very far from being always certain of the truth of all our fentiments; for we are but too frequently dazzled by appearances, fometimes exceedingly flight, and whofe falfehood we afterwards difcover. As we are, therefore, continually in danger of deceiving ourfelves, a reafonable man is bound to ufe every effort to avoid error, though lie may not always be fo happy as to fucceed.

The thing to be here. chiefly confidered is the folidity of the proofs on which we found our perfuafion of any truth whatever, and it is abfolutely neceffary that we fhould be in a condition to judge if they are fufficient to convince us or not. For this effect I remark, firf, that all truths within our reach
are referable to three claffes, effentially diftinguifhed from each other.

The firft contains the truths of the fenfes; the fecond, thofe of the underftanding; and the third, thofe of belief. Each of thefe claffes requires peculiar proofs of the truths included in it, and in thefe thrce claffes all human knowledge is comprehended.

Proofs of the firft clafs are reducible to the fenfes, and are thus exprefled:

This is true, for I fazv it, or am convinced of it by the evidence of my fenjes.

It is thus I know that the magnet attracts iron, becaufe I fee it, and experience furnifhes me with inconteftable proofs of the fact. Truths of this clafs are called fenfible, becaufe they are founded on the fenfes, or on experience.

Proofs of the fecond clafs are founded in ratiocination; thus:

This is true, for I am able to demonfleate it on principles of juft reafoning, or by fair jyllogijins.

To this clafs, principally, logic is to be referred, which prefcribes rules for reafoning confequentially. It is thus, we know, that the three angles of a rectilineal triangle are together equal to two right angles. In this cafe I do not fay I fee it, or that my fenfes convince me of it; but I am affured of it's truth by a procefs of reafoning. Truths of this clafs are called intellectual, and here we muft rank all the truths of geometry, and of the other fciences, in as inuch as they are fupported by demonftration. You muft be fenfible, that fuch truths are wholly different from

Vol. I.
Ff
there
thofe of the firft clafs, in fupport of which we adduce no other proofs but the fenfes, or experience, which aflure us that the fact is fo, though we may not know the caufe of it. In the example of the magnet, we do not know how the attraction of iron is a nececeffary effect of the nature of the magnet, and of iron; but we are not the lefs convinced of the truth of the fact. Truths of the firft clafs are as certain as thofe of the fecond, though the proofs which we have of them are entirely different.

I proceed to the third clafs of truths, that of faith, which we believe, becaufe perfons worthy of credit relate them; or when we fay:

This is true, for feveral creditable perfons bave afjured us of $i t$.

This clafs, accordingly, includes all biforical truths. You believe, no doubt, that there was formerly a king of Macedon, called Alexander the Great, who made himfelf mafter of the kingdom of Perfia, though you never faw him, and are unable to demonftrate, geometrically, that fuch a perfon ever exifted. But we believe it on the authority of the authors, who have written his hiftory, and we entertain no doubt of their fidelity. But may it not be poffible that thefe authors have concerted to deceive us? We have evcry reafon to reject fuch an infinuation, and we are as much convinced of the truth of thefe facts, at leaft of a great part of them, as of truths of the firft and fecond ciaffes.

The proofs of thefe three claffes of truths are extremely different; but if they are folid, each in it's
kind, they muft equally produce conviction. You cannot poffibly doubt that Ruffians and Auftrians have been at Berlin, though you did not fee them : this, then, is to you a truth of the third clafs, as you believe it on the report of others; but to me it is one of the firft clafs, becaufe I faw them, and converfed with them, and as many others were affured of their prefence by means of other fenfes. You have, neverthelefs, as complete conviction of the fact as we have.
$31 /$ March, 176 I.

END OF THE FIRST VOLUME.
,
$+$ \qquad
0^{2}
\qquad
\qquad
$-$
\qquad
\qquad
|

[^0]: * The German mile is equal to $43-5$ ths miles Englifh, nearly. + About 83 Englih miles.

[^1]: * 356,050,000,000 miles Englifh.
 \dagger 'This letter, in the original edition, that of Leiprig, 1770 , is dated, Berlin 19th April, 1760; and concludes with thefe words,

[^2]: * A village about a league from Berlin.

[^3]: * The velocity of found is generally computed at 1,142 feet each fecond, but varies with the elaticity and denfity of the air. The earth travels in her orbit $1,612,000$ miles in the fpace of 24 hours, and therefore with a velocity more than 50 times greater than that of a cannon ball. Light mores about 13 millions of miles every minute.

[^4]: * 24,840 Englif miles $\ddagger 5^{89}$,950 Englifh.

[^5]: * In order to have a clear conception of what follows, it muft be recollected, that the terms relation and ratio are fynonimous, and that the author is here confidering geometrical proportion, which confifts in the number of times that the firft term is contained in the fecond. $-F . E$.

[^6]: * Great care muft be taken to guard ourfelves from affixing to numbers the idea of a perfect identity with the founds which they reprefent. The firf express only the relation of the number of vibrations performed in the fame time, by the bodies which emit the founds in queftion. There is no real analogy between number and found.-F. E.

[^7]: * This is true only to a certain degree; for, if we except the knowledge of the relation of notes, or the numerical expreffion of intervals, numbers cannot be introduced into mufic, as Mr. d'Alembert has juftly remarked, but as a piece of ufelefs parade; and the fcanty knowledge they furnifh is far fhort of the theory of compofition, which is founded on the pleafure of the ear, and h:therto no one has attempted to make this a fubject of calculation. $-F$. E.

[^8]: * It is an erroneous principle that the air is diftinguifhed from other fluids by it's fufceptibility of compreffion. All fluids are perfectly elaftic, only the force required to produce a certain degree of compreffion differs very widely in each. Thus the fame force which caufes water to fuffer a contraction of only the thirty thoufandth part of it's bulk, condenfes air into one half. The real diftinction between the aeriform and liquid fluids feems to be, that the reaction of the former is proportional to their denfity, while that of the latter is proportional to the quantity of com-preffion.-E. E.

[^9]: * The action of the moon upon the atmofphere, and the motion of the earth's rotation likewife produce regular winds. Chains of mountains fometimes change the direction of winds. Hence we fee that the known caute of currents of air are of three kinds, regular, accidental, and local.-F. E_{0}

[^10]: * The properties of matter muft ultimately be referred to the arbitrary appointment of the Author of Nature. There are cer-

[^11]: * This does not appear perfectly exact. A perpetual current of wind, from eaft to weft, mult be produced by the motion of the earth's rotation. It refults, likewife, from M. d'Alembert's theory of winds. Befides, the attraction of the moon, which is capable of railing the waters of the globe, undoubtedly communicates fome motion to the atmofphere. Here, then, we have fuperior currents.

 When aebrofation is carried to perfection, it will, perhaps, procure us fatisfying information refpecting this article of meteoro-logy.-F. E:

[^12]: * Mr. Euler always means German miles, of 4000 fathoms each, or fomewhat under 4 3-5ths miles Englifh. $-E$. E.

[^13]: * There are clouds, however, above thefe mountains, and in almoft as great a quantity as above the plains, which is demonftrated by the fnows which cover the higheft fummits. There are few naturalifts who have not been furprifed by clouds in their excurfions upon the mountains. The heat that is felt when fuch clouds are formed muft be attributed almoft entirely to the tranfmiffion of the water which found itfelf diffolved in the air, under the form of elaftic fluid, to a liquid ftate. The heat of the folar rays, intercepted by the cloud, can produce no change in the inferior temperature, as it would have been tranfmitted from the ground. $-\boldsymbol{F}$. E.

[^14]: * This important fact was difcovered toward the end of the laft century by Roemer, a learned Dane, of the ancient Academy of Sciences. It was an inequality of the fatellites of Jupiter which led him to it. The caule of this aberration, difcovered by Bradley in $\cdot{ }^{1} 728$, inconteftably demonfrates the fame phenomenon.F. E.

[^15]: " ing, in our refearches into the phenomena of this vifible world, " which lies open to the examination of our fenfes, how wretched " muft we have been had God left us to ourfelves with refpect to "things invifible, and which concern our eternal falvation? On "this important article a Revelation was abfolutely neceffary to " us; and we ought to avail ourfelves of it with the moft pross found veneration. When it prefents to us things which may s6 appear inconceivable, we have but to reflect on the imperfection cr of human underfanding, which is fo apt to be mifled, even äs ss to fenfible objects. Whenever I hear a pretended Freethinker ss inveighing againft the truths of religion, and even fneering at " it with the moft arrogant felf-fufficiency, I fay to myfelf: foor ${ }^{56}$ weak mortal, how inexprelfibly more noble and fublime are the ss fubjecis which you treat fo lightly, than thofe refpecting which s6 the great Newton was fo grofsly miftaken! I could wifh your "Highnefs to kecp this reflection ever in remembrance: occafions ${ }^{56}$ for making it occur but too frequently. " $-E . E$.

[^16]: * More than 1ヶ0,000 miles Englih.-E. E.

[^17]: * The Author is evidently embarraffed in his explanation of the continual inflammation of the fun. And though he has faid above, that the fyftem of emanation was untenable, on account of the frequent and unavoidable collifion of rays proceeding from different luminous bodies, which muft difturb, and even obftruct the vifion of feveral of thefe bodies at once, as he has not explained how two founds may be heard at the fame time, a fimilar objection might be made to his fyftem, which is analogous to the phenomena of found,-F.E,

[^18]: * Úpwards of 170,000 Englifh miles.

[^19]: * Euclid's Elements, Book I. Prop. 15 .

[^20]: 27th Tuly, 1760.

[^21]: * As the furfaces of fpheres are to one another as the fquares of their radii, it mult be concluded, from what the Author has just now faid, that the intenfity of light, at different diftances from the point which produces it, is in the inverfe ratio of the fquare of thefe diftances. It muft be recollected, that the fquare of a number is the product which refults from the multiplication of that number by itfelf. $-F, E$.

[^22]: * This was the blind man, on whom the famous Cheffelden performed the operation of the couching cataract.-F. E.

[^23]: * Such were the Pyrrhonifts. We fill give the name of fecpficim, or Pyrrhonifm, to this ftate of univerfal doubt or uncer-tainty,-F.E.

[^24]: * Euclid's Elements, book I. Prop. 13.
 + Euclid, book I. Prop. 4.

[^25]: - Euclid, book Í. Propo 15.

[^26]: * Mr. Euler's idea is ingenious, that the three pellucid fubftances of which the eye is compofed ferve to correct the unequal, refrangibility of the rays of light, and produce a perfect pi\&ure on the retina. Unfortunately this perfection is merely ideal, nor is the eye an achromatic inftrument. A very fimple experiment will evince the truth of this remark. Make two parallel black frokes, adjacent to each other, on a bit of paper; thut the one eye, and

[^27]: * 3950 miles Englifh.

[^28]: rith Septeriber, 1760 .

[^29]: * It is more cuftomary to fay, that attraction is in the direct ratio of the maffes of the attracting and attracted bodies; and in the inverfe ratio of the fquare of their diftance $-F, E$.

[^30]: - Letter II.

[^31]: * We have already in common ufe, in our own language, the adjective inert, and the adverb inertly, and their meaning is generally underftood. But hitherto no author of name, except in works of philofophy, has ventured to introduce the correfpondent fubftantive noun into general compofition, much lefs to clothe it with an Englifh form. The Latin term inertia is, therefore, retained in this tranflation. The linguift and the philofopher need no interpretation. The unlearned reader is referred to what Mr. Euler fays in the context, or to the explanation of foreign and fcicintific terms affixed to this work. - E. E.

[^32]: 11th Nevember, 1760.

[^33]: * Sc, becaufe one Prufian theologian was jealous, aud a bignot, according to Mr. Condorcet, he permits himfelf to brand the whole order with the imputation of thefe odious qualities. The impartial Reader will judge whether it is not as polfible for a philoropher and a free-thinker to be uncaudid and illiberal, as for an ecclefiaftic.-E. E.

[^34]: * Mr. Euler concludes this letter, with the following thort fentence: "This likewife is the foundation of all religion, the alone " object of which is to promote the falvation of mankind." What reafon could there be for fupprefling a fentiment fo natural, fo much in place, and fo inoficnfive? - E. E.

[^35]: * Since anatomifts have given us a more exact and pàrticular defription of the brain, we have been obliged to relinquifh this* opinion:

[^36]: * Mr. Euler feems here to be confounding two different queftions, that of the exiftence of exterior objects, and that of a kind of real refemblance between thefe objects and the idea which we have of them. Barclay has, however, carefully diffinguifhed them, and has clearly pointed out the dificerence. All we can at prefent do, is to refer the reader to the article Exiffence, in the Encyclopedia, the only work in which thefe queftions have been treated with an exact analyfis.-F. F.

[^37]: ${ }_{3}$ al Februay, 576s.

[^38]: 17th February, 1761.

[^39]: 24th March, 176x.

